Protecting quantum entanglement from leakage and qubit errors via repetitive parity measurements

We protect two-transmon entanglement from qubit leakage using the same parity checks used to correct standard qubit errors. Protecting quantum information from errors is essential for large-scale quantum computation. Quantum error correction (QEC) encodes information in entangled states of many qubits and performs parity measurements to identify errors without destroying the encoded information. However, traditional QEC cannot handle leakage from the qubit computational space. Leakage affects leading experimental platforms, based on trapped ions and superconducting circuits, which use effective qubits within many-level physical systems. We investigate how two-transmon entangled states evolve under repeated parity measurements and demonstrate the use of hidden Markov models to detect leakage using only the record of parity measurement outcomes required for QEC. We show the stabilization of Bell states over up to 26 parity measurements by mitigating leakage using postselection and correcting qubit errors using Pauli-frame transformations. Our leakage identification method is computationally efficient and thus compatible with real-time leakage tracking and correction in larger quantum processors.

[1]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[2]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[3]  Zhenyu Cai,et al.  A Silicon Surface Code Architecture Resilient Against Leakage Errors , 2019, Quantum.

[4]  C. K. Andersen,et al.  Rapid High-fidelity Multiplexed Readout of Superconducting Qubits , 2018, Physical Review Applied.

[5]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[6]  L. DiCarlo,et al.  Entanglement genesis by ancilla-based parity measurement in 2D circuit QED. , 2013, Physical review letters.

[7]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[8]  Natalie C. Brown,et al.  Handling leakage with subsystem codes , 2019, New Journal of Physics.

[9]  Austin G. Fowler,et al.  Understanding the effects of leakage in superconducting quantum-error-detection circuits , 2013, 1306.0925.

[10]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[11]  Nissim Ofek,et al.  Comparing and combining measurement-based and driven-dissipative entanglement stabilization , 2015, 1509.00860.

[12]  Andrew W. Cross,et al.  Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits. , 2017, Physical review letters.

[13]  Maika Takita,et al.  Demonstration of Weight-Four Parity Measurements in the Surface Code Architecture. , 2016, Physical review letters.

[14]  H. Bombin,et al.  Topological computation without braiding. , 2007, Physical review letters.

[15]  H. Akaike A new look at the statistical model identification , 1974 .

[16]  M Steffen,et al.  Efficient measurement of quantum gate error by interleaved randomized benchmarking. , 2012, Physical review letters.

[17]  Andrew W. Cross,et al.  Demonstration of a quantum error detection code using a square lattice of four superconducting qubits , 2015, Nature Communications.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  L. Baum,et al.  Statistical Inference for Probabilistic Functions of Finite State Markov Chains , 1966 .

[20]  M. A. Rol,et al.  A fast, low-leakage, high-fidelity two-qubit gate for a programmable superconducting quantum computer , 2019 .

[21]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[22]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[23]  C. C. Bultink,et al.  General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED , 2017, 1711.05336.

[24]  Andrew W. Cross,et al.  Leakage suppression in the toric code , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[25]  S. Poletto,et al.  Detecting bit-flip errors in a logical qubit using stabilizer measurements , 2014, Nature Communications.

[26]  Xavier Waintal,et al.  What determines the ultimate precision of a quantum computer , 2017, Physical Review A.

[27]  Barbara M. Terhal,et al.  Fast, High-Fidelity Conditional-Phase Gate Exploiting Leakage Interference in Weakly Anharmonic Superconducting Qubits. , 2019, Physical review letters.

[28]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[29]  Krysta Marie Svore,et al.  Low-distance Surface Codes under Realistic Quantum Noise , 2014, ArXiv.

[30]  Natalie C. Brown,et al.  Comparing Zeeman qubits to hyperfine qubits in the context of the surface code: 171 Yb + and 174 Yb + , 2018, 1803.02545.

[31]  I. Siddiqi,et al.  A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.

[32]  V. Negnevitsky,et al.  Repeated multi-qubit readout and feedback with a mixed-species trapped-ion register , 2018, Nature.

[33]  A. Blais,et al.  Fast and Unconditional All-Microwave Reset of a Superconducting Qubit. , 2018, Physical review letters.

[34]  Jay M. Gambetta,et al.  Rapid Driven Reset of a Qubit Readout Resonator , 2015, 1503.01456.

[35]  Austin G. Fowler,et al.  Coping with qubit leakage in topological codes , 2013, 1308.6642.

[36]  Austin G. Fowler,et al.  Leakage-resilient approach to fault-tolerant quantum computing with superconducting elements , 2014, 1406.2404.

[37]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[38]  M. A. Rol,et al.  Active resonator reset in the nonlinear dispersive regime of circuit QED , 2016, 1604.00916.

[39]  M. Newville,et al.  Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python , 2014 .

[40]  Barbara M. Terhal,et al.  Fault-tolerant quantum computation for local leakage faults , 2005, Quantum Inf. Comput..

[41]  Daniel Sank,et al.  Fast accurate state measurement with superconducting qubits. , 2014, Physical review letters.

[42]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[43]  C. Jones,et al.  Quantifying error and leakage in an encoded Si/SiGe triple-dot qubit , 2018, Nature Nanotechnology.

[44]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[45]  N. Linke,et al.  High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.

[46]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.

[47]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[48]  C. K. Andersen,et al.  Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits , 2019, npj Quantum Information.

[49]  L. DiCarlo,et al.  Density-matrix simulation of small surface codes under current and projected experimental noise , 2017, 1703.04136.

[50]  L. DiCarlo,et al.  Deterministic entanglement of superconducting qubits by parity measurement and feedback , 2013, Nature.

[51]  Ling Hu,et al.  Quantum error correction and universal gate set operation on a binomial bosonic logical qubit , 2018, Nature Physics.

[52]  L. DiCarlo,et al.  Scalable Quantum Circuit and Control for a Superconducting Surface Code , 2016, 1612.08208.

[53]  Robin Harper,et al.  Fault-Tolerant Logical Gates in the IBM Quantum Experience. , 2018, Physical review letters.

[54]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.