Coalgebraic Minimisation of HD-Automata for the -Calculus in a Polymorphic -Calculus

We give a formal definition of HD-automata based on coalgebras. Exploiting such definition we formally specify and implement a minimisation algorithm for HD-automata derived from π-calculus agents. The algorithm is a generalisation of the partition refinement algorithm for classical automata and is specified as a coalgebraic construction defined using λ ∏ , a polymorphic λ-calculus with dependent types. The convergence of the algorithm is proved; moreover, the correspondence of the specification and the implementation is shown.

[1]  Emilio Tuosto,et al.  From Co-algebraic Specifications to Implementation: The Mihda Toolkit , 2002, FMCO.

[2]  John C. Mitchell,et al.  Foundations for programming languages , 1996, Foundation of computing series.

[3]  Rod M. Burstall,et al.  Computational category theory , 1988, Prentice Hall International Series in Computer Science.

[4]  Andrew M. Pitts,et al.  A new approach to abstract syntax involving binders , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[5]  Edmund M. Clarke,et al.  Formal Methods: State of the Art and Future Directions Working Group Members , 1996 .

[6]  Davide Sangiorgi,et al.  A Theory of Bisimulation for the pi-Calculus , 1993, CONCUR.

[7]  Roberto Gorrieri,et al.  A Classification of Security Properties , 1993 .

[8]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..

[9]  Joachim Parrow,et al.  An algebraic verification of a mobile network , 1992, Formal Aspects of Computing.

[10]  Marco Pistore,et al.  Minimizing Transition Systems for Name Passing Calculi: A Co-algebraic Formulation , 2002, FoSSaCS.

[11]  Robin Milner,et al.  Commentary on standard ML , 1990 .

[12]  Andrew M. Pitts,et al.  A Metalanguage for Programming with Bound Names Modulo Renaming , 2000, MPC.

[13]  Marco Pistore,et al.  π-Calculus, structured coalgebras, and minimal HD-automata , 2000 .

[14]  Martín Abadi,et al.  A calculus for cryptographic protocols: the spi calculus , 1997, CCS '97.

[15]  Robin Milner,et al.  Communicating and mobile systems - the Pi-calculus , 1999 .

[16]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[17]  Jeffrey D. Ullman Elements of ML programming , 1994 .

[18]  James Worrell,et al.  Terminal sequences for accessible endofunctors , 1999, CMCS.

[19]  Ugo Montanari,et al.  History-Dependent Automata , 1998 .

[20]  Jean-Claude Fernandez,et al.  An Implementation of an Efficient Algorithm for Bisimulation Equivalence , 1990, Sci. Comput. Program..

[21]  Scott A. Smolka,et al.  CCS expressions, finite state processes, and three problems of equivalence , 1983, PODC '83.

[22]  Faron Moller,et al.  The Mobility Workbench - A Tool for the pi-Calculus , 1994, CAV.