A discontinuous finite element baroclinic marine model on unstructured prismatic meshes

We describe the time discretization of a three-dimensional baroclinic finite element model for the hydrostatic Boussinesq equations based upon a discontinuous Galerkin finite element method. On one hand, the time marching algorithm is based on an efficient mode splitting. To ensure compatibility between the barotropic and baroclinic modes in the splitting algorithm, we introduce Lagrange multipliers in the discrete formulation. On the other hand, the use of implicit–explicit Runge–Kutta methods enables us to treat stiff linear operators implicitly, while the rest of the nonlinear dynamics is treated explicitly. By way of illustration, the time evolution of the flow over a tall isolated seamount on the sphere is simulated. The seamount height is 90% of the mean sea depth. Vortex shedding and Taylor caps are observed. The simulation compares well with results published by other authors.

[1]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[2]  Robert L. Haney,et al.  On the Pressure Gradient Force over Steep Topography in Sigma Coordinate Ocean Models , 1991 .

[3]  Eric Deleersnijder,et al.  An efficient Eulerian finite element method for the shallow water equations , 2005 .

[4]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[5]  Robert L. Higdon,et al.  Barotropic-Baroclinic Time Splitting for Ocean Circulation Modeling , 1997 .

[6]  Stephen J. Thomas,et al.  A Discontinuous Galerkin Global Shallow Water Model , 2005, Monthly Weather Review.

[7]  Jean-François Remacle,et al.  Practical evaluation of five partly discontinuous finite element pairs for the non‐conservative shallow water equations , 2009 .

[8]  Francis X. Giraldo,et al.  High-order triangle-based discontinuous Galerkin methods for hyperbolic equations on a rotating sphere , 2006, J. Comput. Phys..

[9]  K. Bryan,et al.  Topographically generated eddies , 1976 .

[10]  M. Piggott,et al.  A Nonhydrostatic Finite-Element Model for Three-Dimensional Stratified Oceanic Flows. Part II: Model Validation , 2004 .

[11]  Eric Deleersnijder,et al.  A finite element method for solving the shallow water equations on the sphere , 2009 .

[12]  Ethan J. Kubatko,et al.  hp Discontinuous Galerkin methods for advection dominated problems in shallow water flow , 2006 .

[13]  Clint Dawson,et al.  Time step restrictions for Runge-Kutta discontinuous Galerkin methods on triangular grids , 2008, J. Comput. Phys..

[14]  Khosro Shahbazi,et al.  An explicit expression for the penalty parameter of the interior penalty method , 2022 .

[15]  Dale B. Haidvogel,et al.  Generation of internal lee waves trapped over a tall isolated seamount , 1993 .

[16]  Clinton N Dawson,et al.  A discontinuous Galerkin method for two-dimensional flow and transport in shallow water , 2002 .

[17]  W. Richard Peltier,et al.  A robust unstructured grid discretization for 3-dimensional hydrostatic flows in spherical geometry: A new numerical structure for ocean general circulation modeling , 2006, J. Comput. Phys..

[18]  M. Redi Oceanic Isopycnal Mixing by Coordinate Rotation , 1982 .

[19]  L. Perelman,et al.  A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .

[20]  Clint Dawson,et al.  A Discontinuous Galerkin Method for Three-Dimensional Shallow Water Equations , 2005, J. Sci. Comput..

[21]  H. Hasumi,et al.  Developments in ocean climate modelling , 2000 .

[22]  Akio Arakawa,et al.  Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .

[23]  Clinton N Dawson,et al.  The local discontinuous Galerkin method for three-dimensional shallow water flow , 2007 .

[24]  Jean-François Remacle,et al.  Modal analysis on unstructured meshes of the dispersion properties of the P-1(NC)-P-1 pair , 2009 .

[25]  Jean-François Remacle,et al.  Optimal numerical parameterization of discontinuous Galerkin method applied to wave propagation problems , 2007, J. Comput. Phys..

[26]  Christopher C. Pain,et al.  A new computational framework for multi‐scale ocean modelling based on adapting unstructured meshes , 2008 .

[27]  D. Y. Le Roux,et al.  Raviart–Thomas and Brezzi–Douglas–Marini finite‐element approximations of the shallow‐water equations , 2008 .

[28]  Francois Thomasset,et al.  A noise-free finite element scheme for the two-layer shallow water equations , 1984 .

[29]  C. Provost,et al.  A numerical study of quasi-geostrophic flow over isolated topography , 1985, Journal of Fluid Mechanics.

[30]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[31]  K. Bryan A Numerical Method for the Study of the Circulation of the World Ocean , 1997 .

[32]  Roy A. Walters,et al.  An unstructured grid, three‐dimensional model based on the shallow water equations , 2000 .

[33]  A. Adcroft,et al.  Representation of Topography by Shaved Cells in a Height Coordinate Ocean Model , 1997 .

[34]  David A. Ham,et al.  A scalable unstructured grid 3-dimensional finite volume model for the shallow water equations , 2005 .

[35]  R. C. Malone,et al.  A Reformulation and Implementation of the Bryan-Cox-Semtner Ocean Model on the Connection Machine , 1993 .

[36]  Jean-François Remacle,et al.  Boundary discretization for high‐order discontinuous Galerkin computations of tidal flows around shallow water islands , 2009 .

[37]  R. Labeur,et al.  Interface stabilised finite element method for moving domains and free surface flows , 2009 .

[38]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[39]  B. Cushman-Roisin Introduction to Geophysical Fluid Dynamics , 1994 .

[40]  Graham F. Carey,et al.  Kernel Analysis of the Discretized Finite Difference and Finite Element Shallow-Water Models , 2008, SIAM J. Sci. Comput..

[41]  E. Johnson Starting flow for an obstacle moving transversely in a rapidly rotating fluid , 1984, Journal of Fluid Mechanics.

[42]  Jean-François Remacle,et al.  A discontinuous finite element baroclinic marine model on unstructured prismatic meshes , 2010 .

[43]  Qiang Wang,et al.  The finite element ocean model and its aspect of vertical discretization , 2007 .

[44]  J. Dukowicz,et al.  Implicit free‐surface method for the Bryan‐Cox‐Semtner ocean model , 1994 .

[45]  J. Schröter,et al.  Ocean circulation and sea ice distribution in a finite element global sea ice–ocean model , 2009 .

[46]  Francis X. Giraldo,et al.  A spectral element semi-Lagrangian (SESL) method for the spherical shallow water equations , 2003 .

[47]  Colin J. Cotter,et al.  LBB stability of a mixed Galerkin finite element pair for fluid flow simulations , 2009, J. Comput. Phys..

[48]  Dale B. Haidvogel,et al.  Formation of Taylor caps over a tall isolated seamount in a stratified ocean , 1992 .

[49]  Andrew Staniforth,et al.  Finite Elements for Shallow-Water Equation Ocean Models , 1998 .

[50]  Robert Hallberg,et al.  Stable Split Time Stepping Schemes for Large-Scale Ocean Modeling , 1997 .

[51]  P. Swarztrauber,et al.  A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .

[52]  C. C. Pain,et al.  A mixed discontinuous/continuous finite element pair for shallow-water ocean modelling , 2008, 0805.4380.

[53]  Changsheng Chen,et al.  An Unstructured Grid, Finite-Volume, Three-Dimensional, Primitive Equations Ocean Model: Application to Coastal Ocean and Estuaries , 2003 .

[54]  Daniel Y. Le Roux,et al.  Analysis of Numerically Induced Oscillations in 2D Finite-Element Shallow-Water Models Part I: Inertia-Gravity Waves , 2007, SIAM J. Sci. Comput..

[55]  Joseph Pedlosky,et al.  Waves In The Ocean And Atmosphere , 2003 .

[56]  Qiang Wang,et al.  Finite element ocean circulation model based on triangular prismatic elements, with application in studying the effect of topography representation , 2008 .

[57]  Eric Deleersnijder,et al.  Tracer Conservation for Three-Dimensional, Finite-Element, Free-Surface, Ocean Modeling on Moving Prismatic Meshes , 2008 .

[58]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[59]  Qiang Wang,et al.  Comparison of overflow simulations on different vertical grids using the Finite Element Ocean circulation Model , 2008 .

[60]  M. Gerritsen,et al.  An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator , 2006 .

[61]  Eric Deleersnijder,et al.  Problems and prospects in large-scale ocean circulation models , 2010 .

[62]  Eric Deleersnijder,et al.  Numerical Mass Conservation in a Free-surface Sigma-coordinate Marine Model With Mode Splitting , 1993 .

[63]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[64]  S. Blaise,et al.  Capturing the residence time boundary layer—application to the Scheldt Estuary , 2010 .

[65]  D. Webb,et al.  The Development of a Free-Surface Bryan–Cox–Semtner Ocean Model , 1991 .

[66]  Eric Deleersnijder,et al.  Multi-scale modeling: nested-grid and unstructured-mesh approaches , 2008 .