Threshold for electron trapping nonlinearity in Langmuir waves

which NB = 1. The detrapping rate is found for convective loss (transverse and longitudinal) out of a spatially finite Langmuir wave. Simulations of driven waves with a finite transverse profile, using the 2D-2V Vlasov code loki, show trapping nonlinearity increases continuously with NB for transverse loss, and significant for NB ≈ 1. The detrapping rate due to Coulomb collisions (both electron-electron and electron-ion) is also found, with pitch-angle scattering and parallel drag and diffusion treated in a unified manner. A simple way to combine convective and collisional detrapping is given. Application to underdense plasma conditions in inertial confinement fusion targets is presented. The results show that convective transverse loss is usually the most potent detrapping process in a single f/8 laser speckle. For typical plasma and laser conditions on the inner laser cones of the National Ignition Facility, local reflectivities ∼ 3% are estimated to produce significant trapping effects.

[1]  Kunioki Mima,et al.  Random Phasing of High-Power Lasers for Uniform Target Acceleration and Plasma-Instability Suppression , 1984 .

[2]  O. Landen,et al.  The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .

[3]  John L. Kline,et al.  Onset and saturation of backward stimulated Raman scattering of laser in trapping regime in three spatial dimensions , 2009 .

[4]  Richard L. Berger,et al.  Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facilitya) , 2009 .

[5]  N. Fisch,et al.  Adiabatic nonlinear waves with trapped particles: I. General formalism , 2011, 1107.3071.

[6]  P. Michel,et al.  Stimulated Raman scatter analyses of experiments conducted at the National Ignition Facility a) , 2010 .

[7]  K. Bowers,et al.  Observation of amplification of light by Langmuir waves and its saturation on the electron kinetic timescale , 2010 .

[8]  K. Bowers,et al.  Saturation of backward stimulated scattering of a laser beam in the kinetic regime. , 2007, Physical review letters.

[9]  J. Dawson,et al.  Trapped-Particle Instability , 1969 .

[10]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[11]  L. Divol,et al.  Observation of the density threshold behavior for the onset of stimulated Raman scattering in high-temperature hohlraum plasmas. , 2009, Physical review letters.

[12]  L. Videau,et al.  Statistical analysis of the sizes and velocities of laser hot spots of smoothed beams , 2001 .

[13]  T. M. O'Neil,et al.  The Collisionless Damping of Nonlinear Plasma Oscillations. , 1965 .

[14]  Stephan Brunner,et al.  Two-dimensional Vlasov simulation of electron plasma wave trapping, wavefront bowing, self-focusing, and sideloss , 2011 .

[15]  J. Huba NRL: Plasma Formulary , 2004 .

[16]  D. A. Callahan,et al.  Ray-based calculations of backscatter in laser fusion targets , 2008, 0806.0045.

[17]  J W Banks,et al.  A New Class of Nonlinear Finite-Volume Methods for Vlasov Simulation , 2009, IEEE Transactions on Plasma Science.

[18]  Robert Dewar,et al.  Frequency Shift Due to Trapped Particles , 1972 .

[19]  J. Meyer-ter-Vehn,et al.  The physics of inertial fusion - Hydrodynamics, dense plasma physics, beam-plasma interaction , 2004 .

[20]  E. Valeo,et al.  Trapped-particle instability leading to bursting in stimulated Raman scattering simulations. , 2004, Physical review letters.

[21]  D. Strozzi,et al.  Kinetic enhancement of Raman backscatter, and electron acoustic Thomson scatter , 2006, physics/0610029.

[22]  Edward I. Moses,et al.  The National Ignition Facility: Laser Performance and First Experiments , 2005 .

[23]  E. Williams,et al.  Doppler shift of laser light reflected from expanding plasmas , 1981 .

[24]  Local transit-time dissipation and Landau damping , 1999 .

[25]  T. M. O'Neil,et al.  Nonlinear Effects of Large‐Amplitude Plasma Waves , 1968 .

[26]  D. Strozzi,et al.  Self-organization and threshold of stimulated Raman scattering. , 2010, Physical review letters.

[27]  D. Dubois,et al.  Transient enhancement and detuning of laser-driven parametric instabilities by particle trapping. , 2001, Physical review letters.

[28]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .

[29]  James F. Drake,et al.  Parametric Instabilities of Electromagnetic Waves in Plasmas , 1974 .

[30]  Richard A. London,et al.  Multi-beam effects on backscatter and its saturation in experiments with conditions relevant to ignitiona) , 2011 .

[31]  D. Griffiths,et al.  Introduction to Quantum Mechanics , 1960 .

[32]  T. M. O'Neil,et al.  Nonlinear Frequency Shift of an Electron Plasma Wave , 1972 .

[33]  R. Short,et al.  Landau damping and transit-time damping of localized plasma waves in general geometries , 1998 .

[34]  E. M. Epperlein,et al.  Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation , 1986 .

[35]  Nikolai Yampolsky,et al.  Limiting effects on laser compression by resonant backward Raman scattering in modern experiments , 2011 .

[36]  W. Mori,et al.  Transverse plasma-wave localization in multiple dimensions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Gennady Shvets,et al.  FAST COMPRESSION OF LASER BEAMS TO HIGHLY OVERCRITICAL POWERS , 1999 .

[38]  Effect of nonlinear Landau damping in plasma-based backward Raman amplifier , 2009 .

[39]  D. Strozzi,et al.  Nonlinear Landau damping rate of a driven plasma wave. , 2009, Physical review letters.

[40]  S. D. Conte,et al.  The Plasma Dispersion Function: The Hilbert Transform of the Gaussian , 2013 .

[41]  M. Kruskal,et al.  Exact Nonlinear Plasma Oscillations , 1957 .

[42]  Stefano Atzeni,et al.  The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter , 2004 .

[43]  Langmuir wave filamentation instability , 2007, 0710.3563.

[44]  D. Russell,et al.  A self-consistent trapping model of driven electron plasma waves and limits on stimulated Raman scatter , 2001 .

[45]  W. Manheimer,et al.  Formation of Stationary Large Amplitude Waves in Plasmas , 1971 .

[46]  Samuel A. Letzring,et al.  Improved laser‐beam uniformity using the angular dispersion of frequency‐modulated light , 1989 .

[47]  Comparisons between nonlinear kinetic modelings of simulated Raman scattering using envelope equations , 2012 .

[48]  A. B. Langdon,et al.  On the dominant and subdominant behavior of stimulated Raman and Brillouin scattering driven by nonuniform laser beams , 1998 .

[49]  M. Goldman,et al.  Stimulated Incoherent Scattering of Light from Plasmas , 1965 .

[50]  P. Michel,et al.  National Ignition Campaign Hohlraum energeticsa) , 2009 .