On strain-rate sensitivity and size effect of brittle solids: transition from cooperative phenomena to microcrack nucleation . Continuum Mechanics and Thermodynamics 25 (2-4

An idealized brittle microscale system is subjected to dynamic uniaxial tension in the medium-to-high strain rate range (

[1]  S. Licoccia,et al.  Role of Dislocation Density on the Sample-Size Effect in Nanoscale Plastic Yielding , 2012 .

[2]  Ignacio Iturrioz,et al.  Strength of Brittle Materials under High Strain Rates in DEM Simulations , 2011 .

[3]  A. Rinaldi Effects of dislocation density and sample-size on plastic yielding at the nanoscale: a Weibull-like framework. , 2011, Nanoscale.

[4]  Julia R. Greer,et al.  Emergence of strain-rate sensitivity in Cu nanopillars: Transition from dislocation multiplication to dislocation nucleation , 2011 .

[5]  Sreten Mastilovic,et al.  Further Remarks on Stochastic Damage Evolution of Brittle Solids Under Dynamic Tensile Loading , 2011 .

[6]  Julia R. Greer,et al.  Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect , 2011 .

[7]  N. Bourne Materials’ Physics in Extremes: Akrology , 2011 .

[8]  S. Mastilovic,et al.  Some Observations Regarding Stochasticity of Dynamic Response of 2D Disordered Brittle Lattices , 2011 .

[9]  O. Kraft,et al.  Plasticity in Confined Dimensions , 2010 .

[10]  Julia R. Greer,et al.  Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale , 2010 .

[11]  Dhiraj R. Nahar,et al.  Superhard nanobuttons: constraining crystal plasticity and dealing with extrinsic effects at the nanoscale. , 2010, Small.

[12]  Chengzhi Qi,et al.  Strain-rate effects on the strength and fragmentation size of rocks , 2009 .

[13]  G. Dehm Miniaturized single-crystalline fcc metals deformed in tension: New insights in size-dependent plasticity , 2009 .

[14]  D. Dimiduk,et al.  Plasticity of Micrometer-Scale Single-Crystals in Compression: A Critical Review (PREPRINT) , 2008 .

[15]  G. Pharr,et al.  Effects of pre-strain on the compressive stress-strain response of Mo-alloy single-crystal micropillars , 2008 .

[16]  Sreten Mastilovic A Note on Short-time Response of Two-dimensional Lattices during Dynamic Loading , 2008 .

[17]  A. Ngan,et al.  Stochastic nature of plasticity of aluminum micro-pillars , 2008 .

[18]  Demetrios M. Cotsovos,et al.  Numerical investigation of concrete subjected to high rates of uniaxial tensile loading , 2008 .

[19]  D. Krajcinovic,et al.  Ordering effect of kinetic energy on dynamic deformation of brittle solids , 2008 .

[20]  Reinhard Pippan,et al.  A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples , 2008 .

[21]  J. Greer,et al.  Size dependence in mechanical properties of gold at the micron scale in the absence of strain gradients , 2007 .

[22]  Ying-Cheng Lai,et al.  Statistical damage theory of 2D lattices : Energetics and physical foundations of damage parameter , 2007 .

[23]  H. Espinosa,et al.  Dislocation escape-related size effects in single-crystal micropillars under uniaxial compression , 2007 .

[24]  L. Mishnaevsky Computational Analysis of the Effects of Microstructures on Damage and Fracture in Heterogeneous Materials , 2006 .

[25]  Julia R. Greer,et al.  Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients , 2005 .

[26]  Dusan Krajcinovic,et al.  Thermodynamics and statistical physics of damage processes in quasi-ductile solids , 2005 .

[27]  F. Donze,et al.  Discrete element modelling of concrete submitted to dynamic loading at high strain rates , 2004 .

[28]  D. Dimiduk,et al.  Sample Dimensions Influence Strength and Crystal Plasticity , 2004, Science.

[29]  Stephen M. Walley,et al.  Review of experimental techniques for high rate deformation and shock studies , 2004 .

[30]  Jorge Daniel Riera,et al.  Size and strain rate effects in steel structures , 2004 .

[31]  Pierre Seppecher,et al.  Truss Modular Beams with Deformation Energy Depending on Higher Displacement Gradients , 2003 .

[32]  G. Piero,et al.  Macro- and micro-cracking in one-dimensional elasticity , 2001 .

[33]  Georges Cailletaud,et al.  Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials , 2000 .

[34]  Dusan Krajcinovic,et al.  Statistical models of brittle deformation: Part II: computer simulations , 1999 .

[35]  Z. Bažant,et al.  Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .

[36]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[37]  Scher,et al.  Algebraic scaling of material strength. , 1992, Physical review. B, Condensed matter.

[38]  William A. Curtin,et al.  Brittle fracture in disordered materials: A spring network model , 1990 .

[39]  J. Angus Extreme Value Theory in Engineering , 1990 .

[40]  Alex Hansen,et al.  Rupture of central-force lattices , 1989 .

[41]  M. Deighton Fracture of Brittle Solids , 1976 .

[42]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[43]  Ying-Cheng Lai,et al.  Lattice models of polycrystalline microstructures: A quantitative approach , 2008 .

[44]  Dusan Krajcinovic,et al.  Statistical damage mechanics – constitutive relations , 2006 .

[45]  Martin Ostoja-Starzewski,et al.  Lattice models in micromechanics , 2002 .

[46]  M. V. Vliet Size effect in Tensile Fracture of Concrete and Rock , 2000 .

[47]  Gilles Pijaudier-Cabot,et al.  Progressive damage in discrete models and consequences on continuum modelling , 1996 .

[48]  A. Jagota,et al.  Spring-network and finite-element models for elasticity and fracture , 1994 .

[49]  M. P. Anderson,et al.  Elastic and fracture properties of the two-dimensional triangular and square lattices , 1994 .

[50]  A. Carpinteri,et al.  Multifractal nature of material microstructure and size effects on nominal tensile strength , 1993 .

[51]  Roux,et al.  Fracture of disordered, elastic lattices in two dimensions. , 1989, Physical review. B, Condensed matter.