10 nm gap bowtie plasmonic apertures fabricated by modified lift-off process

Bowtie plasmonic apertures, with gap sizes down to 11 nm and silver film thickness of up to 150 nm (aspect ratio ∼14:1), were fabricated on a silicon nitride membrane. Transmission spectra feature the aperture resonances ranging from 470 to 687 nm, with quality factors around 10. The mode area of the smallest gap aperture is estimated to be as small as 0.002 (λ/n)2 using numerical modeling. Importantly, our fabrication technique, based on an e-beam lithography and a lift-off process, is scalable which allows fabrication of many devices in parallel over a relatively large area. We believe that the devices demonstrated in this work will find application in studying and engineering light-matter interactions.

[1]  M. Bawendi,et al.  Optical Trapping and Two-Photon Excitation of Colloidal Quantum Dots Using Bowtie Apertures , 2016 .

[2]  David R. Smith,et al.  Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities. , 2015, Nano letters.

[3]  R. Gelfand,et al.  Template stripped double nanohole in a gold film for nano-optical tweezers , 2014, Nanotechnology.

[4]  Wenqi Zhu,et al.  Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering , 2014, Nature Communications.

[5]  David R. Smith,et al.  Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas , 2014, Nature Photonics.

[6]  Xianji Piao,et al.  Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas. , 2014, Nano letters.

[7]  Luis M. Traverso,et al.  Optical nanolithography with λ/15 resolution using bowtie aperture array , 2014 .

[8]  R. Quidant,et al.  Three-dimensional manipulation with scanning near-field optical nanotweezers. , 2013, Nature nanotechnology.

[9]  Javier Aizpurua,et al.  Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling. , 2013, Nano letters.

[10]  K. Jefimovs,et al.  Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps , 2013, Nanotechnology.

[11]  I. Bulu,et al.  Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings , 2013, 1308.0522.

[12]  P. Schuck,et al.  Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography. , 2013, Nano letters.

[13]  H. Duan,et al.  Resolution limits of electron-beam lithography toward the atomic scale. , 2013, Nano letters.

[14]  Amr A E Saleh,et al.  Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures. , 2012, Nano letters.

[15]  Huigao Duan,et al.  Printing colour at the optical diffraction limit. , 2012, Nature nanotechnology.

[16]  Evelyn L. Hu,et al.  Large spontaneous emission enhancement in plasmonic nanocavities , 2012, Nature Photonics.

[17]  Michel Bosman,et al.  Nanoplasmonics: classical down to the nanometer scale. , 2012, Nano letters.

[18]  Q. Gong,et al.  Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures. , 2012, ACS nano.

[19]  Zexiang Shen,et al.  Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps. , 2011, ACS nano.

[20]  Reuven Gordon,et al.  Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. , 2011, Nano letters.

[21]  Wenqi Zhu,et al.  Lithographically fabricated optical antennas with gaps well below 10 nm. , 2011, Small.

[22]  I. Bulu,et al.  Plasmonic resonators for enhanced diamond NV-center single photon sources. , 2011, Optics express.

[23]  Joel K. W. Yang,et al.  Sub-10 nm patterning of gold nanostructures on silicon-nitride membranes for plasmon mapping with electron energy-loss spectroscopy , 2010 .

[24]  M. Scully,et al.  Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings. , 2010, Nano letters.

[25]  G W Burr,et al.  Bowtie-shaped nanoaperture: a modal study. , 2010, Optics letters.

[26]  R. Muller,et al.  Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates. , 2010, Nano letters.

[27]  C. Haynes,et al.  Vertically oriented sub-10-nm plasmonic nanogap arrays. , 2010, Nano letters.

[28]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[29]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[30]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[31]  Romain Quidant,et al.  Self -induced back-action optical trapping of dielectric nanoparticles , 2009 .

[32]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[33]  In-Yong Park,et al.  High-harmonic generation by resonant plasmon field enhancement , 2008, Nature.

[34]  Harald Giessen,et al.  Optical resonances of bowtie slot antennas and their geometry and material dependence. , 2008, Optics express.

[35]  Karl K. Berggren,et al.  Using high-contrast salty development of hydrogen silsesquioxane for sub-10‐nm half-pitch lithography , 2007 .

[36]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[37]  Feng Wang,et al.  General properties of local plasmons in metal nanostructures. , 2006, Physical review letters.

[38]  Sreemanth M. V. Uppuluri,et al.  Nanolithography using high transmission nanoscale bowtie apertures. , 2006, Nano letters.

[39]  H. Namatsu,et al.  5-nm-Order Electron-Beam Lithography for Nanodevice Fabrication , 2003, Digest of Papers Microprocesses and Nanotechnology 2003. 2003 International Microprocesses and Nanotechnology Conference.

[40]  Yung Doug Suh,et al.  Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. , 2010, Nature materials.

[41]  B. Prade,et al.  Guided optical waves in fibers with negative dielectric constant , 1994 .