A quantum-walk-inspired adiabatic algorithm for solving graph isomorphism problems

We present a quantum algorithm for solving graph isomorphism problems that is based on an adiabatic protocol. We use a collection of continuous time quantum walks, each one generated by an XY Hamiltonian, to visit the configuration space. In this way we avoid a diffusion over all the possible configurations and significantly reduce the dimensionality of the accessible Hilbert space. Within this restricted space, the graph isomorphism problem can be translated into searching for a satisfying assignment to a 2-SAT (satisfiable) formula and mapped onto a 2-local Hamiltonian without resorting to perturbation gadgets or projective techniques. We present an analysis of the time for execution of the algorithm on small graph isomorphism problem instances and discuss the issue of an implementation of the proposed adiabatic scheme on current quantum computing hardware.

[1]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[2]  Firas Hamze,et al.  High-performance Physics Simulations Using Multi-core CPUs and GPGPUs in a Volunteer Computing Context , 2011, Int. J. High Perform. Comput. Appl..

[3]  J. P. Keating,et al.  Localization and its consequences for quantum walk algorithms and quantum communication , 2007 .

[4]  S. Haas,et al.  Scalable universal holonomic quantum computation realized with an adiabatic quantum data bus and potential implementation using superconducting flux qubits , 2013, 1301.7100.

[5]  M. Ruskai,et al.  Bounds for the adiabatic approximation with applications to quantum computation , 2006, quant-ph/0603175.

[6]  Wolfgang Woess,et al.  Isotropic Markov semigroups on ultra-metric spaces , 2013, 1304.6271.

[7]  Alexander Russell,et al.  The Hidden Subgroup Problem and Quantum Computation Using Group Representations , 2003, SIAM J. Comput..

[8]  C. Umrigar,et al.  Quantum Monte Carlo methods in physics and chemistry , 1999 .

[9]  Alexander Russell,et al.  The Symmetric Group Defies Strong Fourier Sampling , 2008, SIAM J. Comput..

[10]  Daegene Song,et al.  Quantum-Computer Architecture Using Nonlocal Interactions , 2003, quant-ph/0301012.

[11]  39 , 2014, Fetch the Devil.

[12]  R. Moessner,et al.  Quantum adiabatic algorithm and scaling of gaps at first-order quantum phase transitions. , 2012, Physical review letters.

[13]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[14]  S. Huelga,et al.  Dissipative ground-state preparation of a spin chain by a structured environment , 2013, 1304.2201.

[15]  Matthew B. Hastings,et al.  Obstructions to classically simulating the quantum adiabatic algorithm , 2013, Quantum Inf. Comput..

[16]  Julia Kempe,et al.  The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.

[17]  C. Monroe,et al.  Quantum information processing with atoms and photons , 2002, Nature.

[18]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[19]  Anil Shaji,et al.  Markov approximations encounter map domains: A hazard of open quantum dynamics , 2008 .

[20]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[21]  Uwe Schöning Graph Isomorphism is in the Low Hierarchy , 1988, J. Comput. Syst. Sci..

[22]  Andrew M. Childs,et al.  Quantum algorithms for algebraic problems , 2008, 0812.0380.

[23]  Chris D. Godsil,et al.  Symmetric squares of graphs , 2007, J. Comb. Theory, Ser. B.

[24]  A. Lüchow Quantum Monte Carlo methods , 2011 .

[25]  Edward Farhi,et al.  An Example of the Difference Between Quantum and Classical Random Walks , 2002, Quantum Inf. Process..

[26]  A. Young,et al.  Solving the Graph Isomorphism Problem with a Quantum Annealer , 2012, 1207.1712.

[27]  Jérémie Roland,et al.  Anderson localization makes adiabatic quantum optimization fail , 2009, Proceedings of the National Academy of Sciences.

[28]  Fabián A. Chudak,et al.  Investigating the performance of an adiabatic quantum optimization processor , 2010, Quantum Inf. Process..

[29]  Xu Li-ping,et al.  Quantum Information Processing in Quantum Wires , 2004 .

[30]  Eric Bach,et al.  Noninteracting multiparticle quantum random walks applied to the graph isomorphism problem for strongly regular graphs , 2012, 1206.2999.

[31]  J. Köbler,et al.  The Graph Isomorphism Problem: Its Structural Complexity , 1993 .

[32]  W. Marsden I and J , 2012 .

[33]  Simone Severini,et al.  A Matrix Representation of Graphs and its Spectrum as a Graph Invariant , 2006, Electron. J. Comb..

[34]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[35]  Dong Zhou,et al.  Two-particle quantum walks applied to the graph isomorphism problem , 2010, 1002.3003.

[36]  Robert Joynt,et al.  Physically-motivated dynamical algorithms for the graph isomorphism problem , 2005, Quantum Inf. Comput..

[37]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[38]  M. Troyer,et al.  Non‐local Updates for Quantum Monte Carlo Simulations , 2003, physics/0306128.

[39]  G. Rose,et al.  Finding low-energy conformations of lattice protein models by quantum annealing , 2012, Scientific Reports.

[40]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[41]  David P. DiVincenzo,et al.  The complexity of stoquastic local Hamiltonian problems , 2006, Quantum Inf. Comput..

[42]  Daniel A. Spielman,et al.  Faster isomorphism testing of strongly regular graphs , 1996, STOC '96.

[43]  R. Leighton,et al.  The Feynman Lectures on Physics; Vol. I , 1965 .

[44]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design , 2010, Quantum Inf. Process..