Weighted Preferences in Evolutionary Multi-objective Optimization

Evolutionary algorithms have been widely used to tackle multi-objective optimization problems. Incorporating preference information into the search of evolutionary algorithms for multi-objective optimization is of great importance as it allows one to focus on interesting regions in the objective space. Zitzler et al. have shown how to use a weight distribution function on the objective space to incorporate preference information into hypervolume-based algorithms. We show that this weighted information can easily be used in other popular EMO algorithms as well. Our results for NSGA-II and SPEA2 show that this yields similar results to the hypervolume approach and requires less computational effort.

[1]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[2]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[3]  Tobias Friedrich,et al.  Approximating the volume of unions and intersections of high-dimensional geometric objects , 2008, Comput. Geom..

[4]  Xiaodong Li,et al.  Integrating user preferences with particle swarms for multi-objective optimization , 2008, GECCO '08.

[5]  S.L. Ho,et al.  Incorporating A Priori Preferences in a Vector PSO Algorithm to Find Arbitrary Fractions of the Pareto Front of Multiobjective Design Problems , 2008, IEEE Transactions on Magnetics.

[6]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[7]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[8]  Lothar Thiele,et al.  A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2009, Evolutionary Computation.

[9]  Erik D. Goodman,et al.  Non-even spread NSGA-II and its application to conflicting multi-objective compatible control , 2009, GEC '09.

[10]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[11]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[12]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[13]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[14]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[15]  R. Lyndon While,et al.  A Scalable Multi-objective Test Problem Toolkit , 2005, EMO.

[16]  Christian Igel,et al.  Efficient covariance matrix update for variable metric evolution strategies , 2009, Machine Learning.

[17]  Anne Auger,et al.  Articulating user preferences in many-objective problems by sampling the weighted hypervolume , 2009, GECCO.

[18]  Xiaodong Li,et al.  Reference Point-Based Particle Swarm Optimization Using a Steady-State Approach , 2008, SEAL.

[19]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[20]  Xiaodong Li,et al.  Using a distance metric to guide PSO algorithms for many-objective optimization , 2009, GECCO.