Volumetric locking suppression method for nearly incompressible nonlinear elastic multi-layer beams using ANCF elements

The analysis and solution of many modern flexible multibody dynamic problems require formulations that are able to effectively model bodies with nonlinear materials undergoing large displacements and deformations. The absolute nodal coordinate formulation (ANCF) in connection with a continuum-based approach is one way to deal with these systems. The main objective of this work is to extend an existent approach for the modelling of slender structures within the ANCF framework with nonlinear, nearly incompressible materials using the volumetric energy penalty technique. The main part of the study is devoted to the evaluation of multi-layer beam models and simplifications in the locking suppression method based on F-bar projection. The results present significantly better agreement with the reference solution for multi-layer structures built with the standard ANCF beam element as compared with the earlier implementation.

[1]  A. Shabana Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation , 1997 .

[2]  A. Shabana Computational Continuum Mechanics: Computational Geometry and Finite Element Analysis , 2008 .

[3]  Janusz Frączek,et al.  Nearly incompressible nonlinear material models in the large deformation analysis of beams using ANCF , 2015 .

[4]  E. Hairer,et al.  Stiff and differential-algebraic problems , 1991 .

[5]  Hiroyuki Sugiyama,et al.  Formulation of Three-Dimensional Joint Constraints Using the Absolute Nodal Coordinates , 2003 .

[6]  Johannes Gerstmayr,et al.  Analysis of Thin Beams and Cables Using the Absolute Nodal Co-ordinate Formulation , 2006 .

[7]  E. Haug,et al.  Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems , 1982 .

[8]  R. Y. Yakoub,et al.  Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications , 2001 .

[9]  C. W. Gear,et al.  Automatic integration of Euler-Lagrange equations with constraints , 1985 .

[10]  Achlan,et al.  Mathematical and computational models of incompressible materials subject to shear , 2014 .

[11]  K. Bathe Finite Element Procedures , 1995 .

[12]  Ahmed A. Shabana,et al.  Analysis of warping deformation modes using higher order ANCF beam element , 2016 .

[13]  A. Mikkola,et al.  A geometrically exact beam element based on the absolute nodal coordinate formulation , 2008 .

[14]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[15]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .

[16]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[17]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[18]  Ahmed A. Shabana,et al.  Computational Continuum Mechanics , 2008 .

[19]  Qiang Tian,et al.  Dynamics of a large scale rigid–flexible multibody system composed of composite laminated plates , 2011 .

[20]  Javier García de Jalón,et al.  Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge , 1994 .

[21]  Grzegorz Orzechowski Analysis of beam elements of circular cross section using the absolute nodal coordinate formulation , 2012 .

[22]  A. Mikkola,et al.  Description of Elastic Forces in Absolute Nodal Coordinate Formulation , 2003 .

[23]  Johannes Gerstmayr,et al.  Deformation modes in the finite element absolute nodal coordinate formulation , 2006 .

[24]  Javier García de Jalón,et al.  Kinematic and Dynamic Simulation of Multibody Systems , 1994 .

[25]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[26]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[27]  Ahmed A. Shabana,et al.  Flexible Multibody Dynamics: Review of Past and Recent Developments , 1997 .

[28]  Sung Pil Jung,et al.  Dynamic analysis of rubber-like material using absolute nodal coordinate formulation based on the non-linear constitutive law , 2011 .

[29]  R. Y. Yakoub,et al.  Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory , 2001 .

[30]  Ahmed A. Shabana,et al.  Poisson modes and general nonlinear constitutive models in the large displacement analysis of beams , 2007 .

[31]  Ahmed A. Shabana,et al.  A new multibody system approach for tire modeling using ANCF finite elements , 2016 .

[32]  J. Mayo,et al.  Describing Rigid-Flexible Multibody Systems Using Absolute Coordinates , 2003 .

[33]  Tamer M. Wasfy,et al.  Computational strategies for flexible multibody systems , 2003 .

[34]  Ahmed A. Shabana,et al.  Use of general nonlinear material models in beam problems: Application to belts and rubber chains , 2009 .