Volumetric locking suppression method for nearly incompressible nonlinear elastic multi-layer beams using ANCF elements
暂无分享,去创建一个
[1] A. Shabana. Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation , 1997 .
[2] A. Shabana. Computational Continuum Mechanics: Computational Geometry and Finite Element Analysis , 2008 .
[3] Janusz Frączek,et al. Nearly incompressible nonlinear material models in the large deformation analysis of beams using ANCF , 2015 .
[4] E. Hairer,et al. Stiff and differential-algebraic problems , 1991 .
[5] Hiroyuki Sugiyama,et al. Formulation of Three-Dimensional Joint Constraints Using the Absolute Nodal Coordinates , 2003 .
[6] Johannes Gerstmayr,et al. Analysis of Thin Beams and Cables Using the Absolute Nodal Co-ordinate Formulation , 2006 .
[7] E. Haug,et al. Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems , 1982 .
[8] R. Y. Yakoub,et al. Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications , 2001 .
[9] C. W. Gear,et al. Automatic integration of Euler-Lagrange equations with constraints , 1985 .
[10] Achlan,et al. Mathematical and computational models of incompressible materials subject to shear , 2014 .
[11] K. Bathe. Finite Element Procedures , 1995 .
[12] Ahmed A. Shabana,et al. Analysis of warping deformation modes using higher order ANCF beam element , 2016 .
[13] A. Mikkola,et al. A geometrically exact beam element based on the absolute nodal coordinate formulation , 2008 .
[14] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[15] O. C. Zienkiewicz,et al. The Finite Element Method for Solid and Structural Mechanics , 2013 .
[16] Linda R. Petzold,et al. Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.
[17] R. D. Wood,et al. Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .
[18] Ahmed A. Shabana,et al. Computational Continuum Mechanics , 2008 .
[19] Qiang Tian,et al. Dynamics of a large scale rigid–flexible multibody system composed of composite laminated plates , 2011 .
[20] Javier García de Jalón,et al. Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge , 1994 .
[21] Grzegorz Orzechowski. Analysis of beam elements of circular cross section using the absolute nodal coordinate formulation , 2012 .
[22] A. Mikkola,et al. Description of Elastic Forces in Absolute Nodal Coordinate Formulation , 2003 .
[23] Johannes Gerstmayr,et al. Deformation modes in the finite element absolute nodal coordinate formulation , 2006 .
[24] Javier García de Jalón,et al. Kinematic and Dynamic Simulation of Multibody Systems , 1994 .
[25] T. Hughes,et al. B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .
[26] Ahmed A. Shabana,et al. Dynamics of Multibody Systems , 2020 .
[27] Ahmed A. Shabana,et al. Flexible Multibody Dynamics: Review of Past and Recent Developments , 1997 .
[28] Sung Pil Jung,et al. Dynamic analysis of rubber-like material using absolute nodal coordinate formulation based on the non-linear constitutive law , 2011 .
[29] R. Y. Yakoub,et al. Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory , 2001 .
[30] Ahmed A. Shabana,et al. Poisson modes and general nonlinear constitutive models in the large displacement analysis of beams , 2007 .
[31] Ahmed A. Shabana,et al. A new multibody system approach for tire modeling using ANCF finite elements , 2016 .
[32] J. Mayo,et al. Describing Rigid-Flexible Multibody Systems Using Absolute Coordinates , 2003 .
[33] Tamer M. Wasfy,et al. Computational strategies for flexible multibody systems , 2003 .
[34] Ahmed A. Shabana,et al. Use of general nonlinear material models in beam problems: Application to belts and rubber chains , 2009 .