A multi-phenotype genome-wide association study of clades causing tuberculosis in a Ghanaian- and South African cohort.

[1]  C. Haiman,et al.  Population specific reference panels are crucial for genetic analyses: an example of the CREBRF locus in Native Hawaiians. , 2020, Human molecular genetics.

[2]  Scott M. Williams,et al.  Interaction between host genes and M. tuberculosis lineage can affect tuberculosis severity: evidence for coevolution , 2019, bioRxiv.

[3]  Stephanie J. Müller,et al.  Evaluating the Accuracy of Imputation Methods in a Five-Way Admixed Population , 2019, Front. Genet..

[4]  Christopher R. Gignoux,et al.  A Sex-Stratified Genome-Wide Association Study of Tuberculosis Using a Multi-Ethnic Genotyping Array , 2018, bioRxiv.

[5]  K. Gronert,et al.  Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN-γ/HIF-1α signaling and supports host defense , 2018, PLoS pathogens.

[6]  T. Mushiroda,et al.  Pathogen lineage-based genome-wide association study identified CD53 as susceptible locus in tuberculosis , 2017, Journal of Human Genetics.

[7]  P. V. van Helden,et al.  The arms race between man and Mycobacterium tuberculosis: Time to regroup. , 2017, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[8]  P. V. van Helden,et al.  The role of human host genetics in tuberculosis resistance , 2017, Expert review of respiratory medicine.

[9]  T. Hsieh,et al.  The risk of tuberculosis disease in rheumatoid arthritis patients on biologics and targeted therapy: A 15-year real world experience in Taiwan , 2017, PloS one.

[10]  Eun Pyo Hong,et al.  Risk prediction of pulmonary tuberculosis using genetic and conventional risk factors in adult Korean population , 2017, PloS one.

[11]  I. Shrier,et al.  Risk of Active Tuberculosis in Patients With Cancer: A Systematic Review and Metaanalysis , 2016, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[12]  Zachary A. Szpiech,et al.  A continuum of admixture in the Western Hemisphere revealed by the African Diaspora genome , 2016, Nature Communications.

[13]  Liliana K. Rutaihwa,et al.  Mycobacterium tuberculosis Lineage 4 comprises globally distributed and geographically restricted sublineages , 2016, Nature Genetics.

[14]  M. Scholz,et al.  Comparing performance of modern genotype imputation methods in different ethnicities , 2016, Scientific Reports.

[15]  Alan M. Kwong,et al.  Next-generation genotype imputation service and methods , 2016, Nature Genetics.

[16]  F. Cunningham,et al.  The Ensembl Variant Effect Predictor , 2016, Genome Biology.

[17]  M. Daya,et al.  TLR1, 2, 4, 6 and 9 Variants Associated with Tuberculosis Susceptibility: A Systematic Review and Meta-Analysis , 2015, PloS one.

[18]  Gabor T. Marth,et al.  An integrated map of structural variation in 2,504 human genomes , 2015, Nature.

[19]  M. Swertz,et al.  Molgenis-impute: imputation pipeline in a box , 2015, BMC Research Notes.

[20]  D. Brites,et al.  Co-evolution of Mycobacterium tuberculosis and Homo sapiens , 2015, Immunological reviews.

[21]  J. Hattendorf,et al.  Mycobacterium africanum Is Associated with Patient Ethnicity in Ghana , 2015, PLoS neglected tropical diseases.

[22]  M. Bonder,et al.  Genotype harmonizer: automatic strand alignment and format conversion for genotype data integration , 2014, BMC Research Notes.

[23]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[24]  Vysaul B. Nyirongo,et al.  Reappraisal of known malaria resistance loci in a large multi-centre study , 2014, Nature Genetics.

[25]  A. Price,et al.  Genome-wide association study of ancestry-specific TB risk in the South African Coloured population. , 2014, Human molecular genetics.

[26]  M. Carrington,et al.  Associations between human leukocyte antigen class I variants and the Mycobacterium tuberculosis subtypes causing disease. , 2014, The Journal of infectious diseases.

[27]  Richard Durbin,et al.  Efficient haplotype matching and storage using the positional Burrows–Wheeler transform (PBWT) , 2014, Bioinform..

[28]  Christopher R. Gignoux,et al.  A Panel of Ancestry Informative Markers for the Complex Five-Way Admixed South African Coloured Population , 2013, PloS one.

[29]  K. Fielding,et al.  Risk factors for infection and disease in child contacts of multidrug-resistant tuberculosis: a cross-sectional study , 2013, BMC Infectious Diseases.

[30]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[31]  J. Marchini,et al.  Fast and accurate genotype imputation in genome-wide association studies through pre-phasing , 2012, Nature Genetics.

[32]  S. Gagneux Host–pathogen coevolution in human tuberculosis , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[33]  M. Newport,et al.  Common variants at 11p13 are associated with susceptibility to tuberculosis , 2012, Nature Genetics.

[34]  Bachti Alisjahbana,et al.  A genome wide association study of pulmonary tuberculosis susceptibility in Indonesians , 2012, BMC Medical Genetics.

[35]  S. Niemann,et al.  Variant G57E of Mannose Binding Lectin Associated with Protection against Tuberculosis Caused by Mycobacterium africanum but not by M. tuberculosis , 2011, PloS one.

[36]  H. Maamar,et al.  Mycobacterium tuberculosis Uses Host Triacylglycerol to Accumulate Lipid Droplets and Acquires a Dormancy-Like Phenotype in Lipid-Loaded Macrophages , 2011, PLoS pathogens.

[37]  Noffisat O. Oki,et al.  Novel human genetic variants associated with extrapulmonary tuberculosis: a pilot genome wide association study , 2011, BMC Research Notes.

[38]  A. Morris,et al.  Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2 , 2010, Nature Genetics.

[39]  C. Seoighe,et al.  Genome-wide analysis of the structure of the South African Coloured Population in the Western Cape , 2010, Human Genetics.

[40]  M. Möller,et al.  Current findings, challenges and novel approaches in human genetic susceptibility to tuberculosis. , 2010, Tuberculosis.

[41]  David H. Alexander,et al.  Fast model-based estimation of ancestry in unrelated individuals. , 2009, Genome research.

[42]  J. Dziadek,et al.  Mycobacterium tuberculosis Is Able To Accumulate and Utilize Cholesterol , 2009, Journal of bacteriology.

[43]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[44]  R. Warren,et al.  Changing Mycobacterium tuberculosis population highlights clade-specific pathogenic characteristics. , 2009, Tuberculosis.

[45]  R. Gie,et al.  No decrease in annual risk of tuberculosis infection in endemic area in Cape Town, South Africa , 2009, Tropical medicine & international health : TM & IH.

[46]  Jean-François Zagury,et al.  Shape-IT: new rapid and accurate algorithm for haplotype inference , 2008, BMC Bioinformatics.

[47]  M. Daly,et al.  Estimation of the multiple testing burden for genomewide association studies of nearly all common variants , 2008, Genetic epidemiology.

[48]  J. Farrar,et al.  The Influence of Host and Bacterial Genotype on the Development of Disseminated Disease with Mycobacterium tuberculosis , 2008, PLoS pathogens.

[49]  O. Werz,et al.  ALOX5 variants associated with susceptibility to human pulmonary tuberculosis. , 2007, Human molecular genetics.

[50]  Hiroyuki Yamada,et al.  Retinoic acid therapy attenuates the severity of tuberculosis while altering lymphocyte and macrophage numbers and cytokine expression in rats infected with Mycobacterium tuberculosis. , 2007, The Journal of nutrition.

[51]  Sebastien Gagneux,et al.  Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. , 2007, The Lancet. Infectious diseases.

[52]  Nalin Rastogi,et al.  Proposal for Standardization of Optimized Mycobacterial Interspersed Repetitive Unit-Variable-Number Tandem Repeat Typing of Mycobacterium tuberculosis , 2006, Journal of Clinical Microbiology.

[53]  S. Niemann,et al.  Mycobacterium tuberculosis Drug Resistance, Ghana , 2006, Emerging infectious diseases.

[54]  M. Daly,et al.  Genome-wide association studies for common diseases and complex traits , 2005, Nature Reviews Genetics.

[55]  A. Kok-Jensen,et al.  Mannose-binding lectin polymorphisms in clinical tuberculosis. , 2003, The Journal of infectious diseases.

[56]  Rachel M. Adams,et al.  The cholesterol-regulated StarD4 gene encodes a StAR-related lipid transfer protein with two closely related homologues, StarD5 and StarD6 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[57]  R. Bellamy Genetic susceptibility to tuberculosis in human populations , 1998 .

[58]  A. Syvänen,et al.  Contribution of the CCR5 and MBL genes to susceptibility to HIV type 1 infection in the Finnish population. , 1998, AIDS research and human retroviruses.

[59]  Allen M. Featherstone,et al.  Sample Size and Robustness of Inferences from Logistic Regression in the Presence of Nonlinearity and Multicollinearity , 2011 .

[60]  J. Yim,et al.  INVITED REVIEW SERIES: TUBERCULOSIS , 2010 .

[61]  The International HapMap Consortium A haplotype map of the human genome , 2005 .

[62]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..