Nanocrystalline boron-doped diamond nanoelectrode arrays for ultrasensitive dopamine detection

Abstract In this paper we present nanocrystalline boron-doped diamond nanoelectrode arrays (BDD-NEAs) for the low-level detection of biogenic substances such as dopamine (DA) without the need for a selective membrane. We achieved a sensitive and reproducible detection of dopamine in the presence of ascorbic acid (AA) with oxygen (O-) terminated BDD-NEAs. To improve the peak separation between dopamine and ascorbic acid, differential pulse voltammetry (DPV) was employed. Therewith, it was possible to measure dopamine with a sensitivity of 57.9 nA μM −1  cm −2 . The detection limit was less than 100 nM with a linear behavior up to a concentration of 20 μM. The choice of the appropriate termination, the combination of the advantages of nanoelectrode arrays together with the outstanding electrochemical properties of boron-doped diamond and the right measurement method allowed successful measurement of dopamine in physiological concentrations in the presence of ascorbic acid.

[1]  Sebastian J. Lechner,et al.  Nano-porous electrode systems by colloidal lithography for sensitive electrochemical detection: fabrication technology and properties , 2008 .

[2]  Yvonne E. Watson,et al.  Fabrication of nanopore array electrodes by focused ion beam milling. , 2007, Analytical chemistry.

[3]  Krystyna Jackowska,et al.  New trends in the electrochemical sensing of dopamine , 2012, Analytical and Bioanalytical Chemistry.

[4]  Polymer composite coated multifiber array microelectrodes as multifunctional voltammetric microsensor for the detection of dopamine , 2009, TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference.

[5]  Wei Chen,et al.  Electrocatalytic oxidation and determination of dopamine in the presence of ascorbic acid and uric acid at a poly (p-nitrobenzenazo resorcinol) modified glassy carbon electrode , 2007 .

[6]  P. Krysiński,et al.  Selective detection of dopamine on poly(indole-5-carboxylic acid)/tyrosinase electrode , 2011 .

[7]  Rachid Driad,et al.  Nanocrystalline diamond nanoelectrode arrays and ensembles. , 2011, ACS nano.

[8]  Electrochemical studies of the oxidation pathways of catecholamines. , 1967 .

[9]  J. Heinze Ultramicroelectrodes in Electrochemistry , 1993 .

[10]  Zhiwei Zhu,et al.  Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. , 2005, Talanta.

[11]  Charles R. Martin,et al.  FABRICATION AND EVALUATION OF NANOELECTRODE ENSEMBLES , 1995 .

[12]  Mehmet Aslanoglu,et al.  Voltammetric selectivity conferred by the modification of electrodes using conductive porous layers or films: The oxidation of dopamine on glassy carbon electrodes modified with multiwalled carbon nanotubes , 2010 .

[13]  D. Arrigan Nanoelectrodes, nanoelectrode arrays and their applications. , 2004, The Analyst.

[14]  G. Rivas,et al.  Amperometric determination of dopamine on an enzymatically modified carbon paste electrode , 1995 .

[15]  Huaiguo Xue,et al.  One step fabrication and characterization of platinum nanopore electrode ensembles formed via amphiphilic block copolymer self-assembly , 2006 .

[16]  Yuzhong Zhang,et al.  Determination of Dopamine in the Presence of Ascorbic Acid Using Poly(hippuric acid) Modified Glassy Carbon Electrode , 2002 .

[17]  Richard G Compton,et al.  Microelectrode arrays for electrochemistry: approaches to fabrication. , 2009, Small.

[18]  S. Andreescu,et al.  Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. , 2010, Analytical chemistry.

[19]  Hao‐Li Zhang,et al.  Nanomolar detection of dopamine in the presence of ascorbic acid at β-cyclodextrin/graphene nanocomposite platform , 2010 .

[20]  J. Cooper,et al.  Nanofabrication of electrode arrays by electron-beam and nanoimprint lithographies. , 2006, Lab on a chip.

[21]  B. Jill Venton,et al.  Psychoanalytical Electrochemistry: Dopamine and Behavior , 2003 .

[22]  D. Arrigan,et al.  Recessed nanoband electrodes fabricated by focused ion beam milling , 2007 .

[23]  Shen-Ming Chen,et al.  Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid. , 2007, Analytica chimica acta.

[24]  A. Fujishima,et al.  Enhanced electrochemical response in oxidative differential pulse voltammetry of dopamine in the presence of ascorbic acid at carboxyl-terminated boron-doped diamond electrodes , 2009 .

[25]  Yuehe Lin,et al.  Functionalized carbon nanotubes and nanofibers for biosensing applications. , 2008, Trends in analytical chemistry : TRAC.

[26]  Martin Stutzmann,et al.  Protein-modified nanocrystalline diamond thin films for biosensor applications , 2004, Nature materials.

[27]  Jian Wang,et al.  Conductive diamond thin-films in electrochemistry , 2003 .

[28]  R. Compton,et al.  Fabricating random arrays of boron doped diamond nano-disc electrodes : Towards achieving maximum Faradaic current with minimum capacitive charging , 2008 .

[29]  R. Wightman,et al.  Monitoring rapid chemical communication in the brain. , 2008, Chemical reviews.

[30]  V. Rotello,et al.  Fabrication and characterization of nanoelectrode arrays formed via block copolymer self-assembly , 2001 .

[31]  Mauro Prasciolu,et al.  Development of electrochemical biosensors by e-beam lithography for medical diagnostics , 2013 .

[32]  Itamar Willner,et al.  Electroanalytical and Bioelectroanalytical Systems Based on Metal and Semiconductor Nanoparticles , 2004 .

[33]  Yanxiu Zhou,et al.  Amperometric biosensor based on tyrosinase immobilized on a boron-doped diamond electrode. , 2007, Biosensors & bioelectronics.

[34]  Cecilia Lete,et al.  Electrochemical sensors based on platinum electrodes modified with hybrid inorganic–organic coatings for determination of 4-nitrophenol and dopamine , 2009 .

[35]  S. Kitazawa,et al.  Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. , 2007, Analytical chemistry.

[36]  D. Tryk,et al.  Boron-doped diamond electrodes: The role of surface termination in the oxidation of dopamine and ascorbic acid , 2007 .

[37]  Charles R. Martin,et al.  Electrochemistry of phenothiazine and methylviologen biosensor electron-transfer mediators at nanoelectrode ensembles , 2000 .

[38]  Kenneth I. Ozoemena,et al.  Electrocatalytic detection of dopamine at single-walled carbon nanotubes–iron (III) oxide nanoparticles platform , 2010 .

[39]  Ya-Ting Chung,et al.  An ultrasensitive nanowire-transistor biosensor for detecting dopamine release from living PC12 cells under hypoxic stimulation. , 2013, Journal of the American Chemical Society.

[40]  R. Wightman,et al.  In vitro comparison of the selectivity of electrodes for in vivo electrochemistry , 1984, Journal of Neuroscience Methods.

[41]  Alessandra Bonanni,et al.  Graphene for electrochemical sensing and biosensing , 2010 .

[42]  Seungwon Jeon,et al.  Determination of Dopamine in the Presence of Ascorbic Acid by Nafion and Single-Walled Carbon Nanotube Film Modified on Carbon Fiber Microelectrode , 2008, Sensors.

[43]  J. Andersen,et al.  Cell in focusDopaminergic neurons , 2005 .

[44]  Yury Gogotsi,et al.  The properties and applications of nanodiamonds. , 2011, Nature nanotechnology.

[45]  R. Mahajan,et al.  Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. , 2010, Biosensors & bioelectronics.

[46]  P. Garris,et al.  pH-Dependent processes at Nafion®-coated carbon-fiber microelectrodes , 1993 .

[47]  Christoph E. Nebel,et al.  Diamond for bio-sensor applications , 2007, 2005.03887.

[48]  Nianqiang Wu,et al.  A large-area nanoscale gold hemisphere pattern as a nanoelectrode array , 2008, Nanotechnology.