A fast numerical solution method for two dimensional Fredholm integral equations of the second kind based on piecewise polynomial interpolation

Abstract In this paper we consider fast numerical solution methods for two dimensional Fredholm integral equation of the second kind f ( x , y ) - ∫ α β ∫ α β a ( x , y , u , v ) f ( u , v ) du dv = g ( x , y ) , ( x , y ) ∈ [ α , β ] × [ α , β ] , where a ( x ,  y ,  u ,  v ) is smooth and g ( x ,  y ) is in L 2 [ α ,  β ] 2 . Discretizing the integral equation by certain quadrature rule, we get a linear system. To deduce fast approximate solution methods for the resulted linear system, we study the approximation of the four-variable kernel function a ( x ,  y ,  u ,  v ) by piecewise polynomial: partition the domain [ α ,  β ] 4 into subdomains of the same size and interpolate the kernel function a ( x ,  y ,  u ,  v ) in each subdomain. Fast matrix–vector multiplication algorithms and efficient iterative methods are derived. Numerical results are given to illustrate the efficiency of our methods.

[1]  F.-R. Lin Preconditioned iterative methods for the numerical solution of Fredholm equations of the second kind , 2003 .

[2]  Gene H. Golub,et al.  Matrix computations , 1983 .

[3]  Johannes Tausch,et al.  The Variable Order Fast Multipole Method for Boundary Integral Equations of the Second Kind , 2004, Computing.

[4]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[5]  G. Alexits Approximation theory , 1983 .

[6]  Lloyd N. Trefethen,et al.  An Extension of MATLAB to Continuous Functions and Operators , 2004, SIAM J. Sci. Comput..

[7]  Ruifang Wang,et al.  Richardson extrapolation of iterated discrete Galerkin solution for two-dimensional Fredholm integral equations , 2002 .

[8]  Deepu Rajan,et al.  Simultaneous Estimation of Super-Resolved Scene and Depth Map from Low Resolution Defocused Observations , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  B. Alpert,et al.  Wavelets for the Fast Solution of Second-Kind Integral Equations , 1990 .

[10]  K. Atkinson,et al.  A survey of numerical methods for the solution of Fredholm integral equations of the second kind , 1977 .

[11]  R. Kress Linear Integral Equations , 1989 .

[12]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[13]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[14]  Fu-Rong Lin,et al.  A fast numerical solution method for two dimensional Fredholm integral equations of the second kind , 2009 .

[15]  David W. Lewis,et al.  Matrix theory , 1991 .

[16]  Annie A. M. Cuyt,et al.  Approximation Theory , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[17]  G. Micula,et al.  Numerical Treatment of the Integral Equations , 1999 .

[18]  Parvez N. Guzdar,et al.  An electromagnetic integral equation: Application to microtearing modes , 1983 .

[19]  L. Greengard,et al.  A new version of the Fast Multipole Method for the Laplace equation in three dimensions , 1997, Acta Numerica.

[20]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[21]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[22]  Yi Wang,et al.  A Fast Wavelet Collocation Method for Integral Equations on Polygons , 2005 .

[23]  L. Delves,et al.  Computational methods for integral equations: Frontmatter , 1985 .

[24]  G Han,et al.  ASYMPTOTIC ERROR EXPANSION AND EXTRAPOLATION OF THE NYSTROM METHOD FOR TWO-DIMENSIONAL FREDHOLM INTEGRAL EQUATIONS , 1995 .

[25]  Bin Wu,et al.  Fast numerical collocation solutions of integral equations , 2007 .