Modal-Structural Mathematics

Few, if any, would dispute Gauss’s metaphor for mathematics as queen of the sciences. Controversy arises only when concrete imagery is suggested. One might imagine the queen as in classical Chinese Tang dynasty representations of Guanyin—erect, robes flowing in regal splendor, isolated in heaven but, notably, lacking any foundational support.

[1]  N. Goodman,et al.  Ways of Worldmaking , 1980 .

[2]  W. W. Tait Mathematics in Philosophy. Charles Parsons , 1986 .

[3]  Hilary Putnam Mathematics, Matter and Method: Mathematics without foundations , 1979 .

[4]  S. Shapiro Conservativeness and Incompleteness , 1983 .

[5]  J. Paris A Mathematical Incompleteness in Peano Arithmetic , 1977 .

[6]  N. Goodman Fact, Fiction, and Forecast , 1955 .

[7]  Paul Benacerraf,et al.  Philosophy of mathematics: What numbers could not be , 1965 .

[8]  Harvey M. Friedman,et al.  On the necessary use of abstract set theory , 1981 .

[9]  Stewart Shapiro,et al.  Mathematics and Reality , 1983, Philosophy of Science.

[10]  G. Hellman,et al.  Physicalism: Ontology, Determination, and Reduction , 1975 .

[11]  Hartry Field,et al.  Science without Numbers , 1983 .

[12]  Hilary Putnam,et al.  Reason, Truth and History: Contents , 1981 .

[13]  H. Keisler,et al.  Handbook of mathematical logic , 1977 .

[14]  Joseph R. Shoenfield,et al.  Mathematical logic , 1967 .

[15]  Hilary Putnam,et al.  Mathematics without Foundations , 1967 .

[16]  D. Malament Science without Numbers by Hartry H. Field , 1982 .

[17]  Paul Teller,et al.  A POOR MAN'S GUIDE TO SUPERVENIENCE AND DETERMINATION1 , 1984 .

[18]  Gottlob Frege,et al.  Philosophical and mathematical correspondence , 1980 .

[19]  Harold T. Hodes Axioms for actuality , 1984, Journal of Philosophical Logic.

[20]  Bas C. van Fraassen,et al.  The Scientific Image , 1980 .