Towards Fully Automatic Optimal Shape Modeling

Shape models and the automatic building of such models have proven over the last decades to be powerful tools in image segmentation and analysis. This thesis makes contributions to this field. The segmentation algorithm typically uses an objective function summing up contributions from each sample point. In this thesis this is replaced by the approximation of a surface integral which improves the segmentation results. Before building a model the shapes in the training set have to be aligned. This is normally done using Procrustes analysis. In the thesis an alignment method based on Minimum Decsription Length (MDL) is examined and the gradient of MDL is derived and used in the optimization. When trying to build optimal models by optimizing MDL there is a tendency for the parameterizations to put most of their weight on small parts of the shapes by doing a mutual reparameterization. In this thesis this problem is solved by replacing the standard scalar product with a formula that is invariant to mutual reparameterizations. This is shown to result in better models. To evaluate the quality of shape models, the standard measures have been generality, specificity and compactness. In this thesis, these measures are shown to have severe weaknesses. An alternative measure called Ground Truth Correspondence Measure is presented. This measure is shown to perform better. Typically, shape modeling assumes that the training set consists of images where the shape has been segmented as a curve or a surface as a preprocessing step. In this thesis a method is introduced that does not need preprocessed manually segmented data, automatically handles outliers/background and missing data, and still produces strong models. The algorithm makes all the decisions about what to include in the model and what to consider as background and about what points in the different images are to be considered to be corresponding. This results in patch-based shape and appearance models generated fully automatically. (Less)

[1]  Timothy F. Cootes,et al.  A minimum description length approach to statistical shape modeling , 2002, IEEE Transactions on Medical Imaging.

[2]  L. P. Horwitz,et al.  Pattern Recognition Using Autocorrelation , 1961, Proceedings of the IRE.

[3]  R. Casey Moment normalization of handprinted characters , 1970 .

[4]  Olivier D. Faugeras,et al.  Statistical shape influence in geodesic active contours , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[5]  Rasmus Larsen,et al.  L1 Generalized Procrustes 2D Shape Alignment , 2008, Journal of Mathematical Imaging and Vision.

[6]  Anders Ericsson,et al.  Core points - a framework for structural parameterization , 2005, Eighth International Conference on Document Analysis and Recognition (ICDAR'05).

[7]  Hemant D. Tagare,et al.  Shape-based nonrigid correspondence with application to heart motion analysis , 1999, IEEE Transactions on Medical Imaging.

[8]  Charles Kervrann,et al.  Robust tracking of stochastic deformable models in long image sequences , 1994, Proceedings of 1st International Conference on Image Processing.

[9]  Thomas Marill,et al.  On the effectiveness of receptors in recognition systems , 1963, IEEE Trans. Inf. Theory.

[10]  Rasmus Larsen,et al.  An Active Illumination and Appearance (AIA) Model for Face Alignment , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Evon C. Greanias,et al.  The Recognition of Handwritten Numerals by Contour Analysis , 1963, IBM J. Res. Dev..

[12]  Stanley Osher,et al.  Implicit and Nonparametric Shape Reconstruction from Unorganized Data Using a Variational Level Set Method , 2000, Comput. Vis. Image Underst..

[13]  Michael I. Miller,et al.  Conditional-mean estimation via jump-diffusion processes in multiple target tracking/recognition , 1995, IEEE Trans. Signal Process..

[14]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[15]  George Nagy,et al.  An Experimental Study of Machine Recognition of Hand-Printed Numerals , 1968, IEEE Trans. Syst. Sci. Cybern..

[16]  Chao-Ning Liu,et al.  Computer-Automated Design of Multifont Print Recognition Logic , 1963, IBM J. Res. Dev..

[17]  Alex Pentland,et al.  Closed-form solutions for physically-based shape modeling and recognition , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  M. K. Khan,et al.  Machine identification of human faces , 1981, Pattern Recognition.

[20]  Robert C. Bolles,et al.  Parametric Correspondence and Chamfer Matching: Two New Techniques for Image Matching , 1977, IJCAI.

[21]  Bernard Widrow,et al.  The "rubber-mask" technique - I. Pattern measurement and analysis , 1973, Pattern Recognit..

[22]  W. Clem Karl,et al.  Shape reconstruction from unorganized points with a data-driven level set method , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[23]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[24]  S. H. Unger,et al.  Pattern Detection and Recognition , 1959, Proceedings of the IRE.

[25]  R. Larsen Non-linear Shape Decomposition using ISOMAP , 2005 .

[26]  Rikard Berthilsson,et al.  A Statistical Theory of Shape , 1998, SSPR/SPR.

[27]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[28]  Matthew Brand,et al.  Incremental Singular Value Decomposition of Uncertain Data with Missing Values , 2002, ECCV.

[29]  W. Highleyman Linear Decision Functions, with Application to Pattern Recognition , 1962, Proceedings of the IRE.

[30]  Kalle Åström,et al.  An affine invariant deformable shape representation for general curves , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[31]  Hildur Ólafsdóttir,et al.  Adding Curvature to Minimum Description Length Shape Models , 2003, BMVC.

[32]  Rasmus Larsen,et al.  Sparse Decomposition and Modeling of Anatomical Shape Variation , 2007, IEEE Transactions on Medical Imaging.

[33]  Timothy F. Cootes,et al.  Shape Discrimination in the Hippocampus Using an MDL Model , 2003, IPMI.

[34]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[35]  Timothy F. Cootes,et al.  Non-linear point distribution modelling using a multi-layer perceptron , 1995, Image Vis. Comput..

[36]  Alan L. Yuille,et al.  Feature extraction from faces using deformable templates , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[37]  Horst Bischof,et al.  Robust Autonomous Model Learning from 2D and 3D Data Sets , 2007, MICCAI.

[38]  D. M. Keenan,et al.  Towards automated image understanding , 1989 .

[39]  Pietro Perona,et al.  Weakly Supervised Scale-Invariant Learning of Models for Visual Recognition , 2007, International Journal of Computer Vision.

[40]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Alex Pentland,et al.  Modal Matching for Correspondence and Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Johan Karlsson,et al.  Parameterisation invariant statistical shape models , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[43]  Alok Gupta,et al.  Dynamic Programming for Detecting, Tracking, and Matching Deformable Contours , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Jorma Rissanen,et al.  The Minimum Description Length Principle in Coding and Modeling , 1998, IEEE Trans. Inf. Theory.

[45]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[47]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[48]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[49]  Vladimir Petrovic,et al.  Information-Theoretic Unification of Groupwise Non-Rigid Registration and Model Building , 2006 .

[50]  J. Kent The Complex Bingham Distribution and Shape Analysis , 1994 .

[51]  David S. Doermann,et al.  Robust point matching for nonrigid shapes by preserving local neighborhood structures , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Johan Karlsson,et al.  Aligning Shapes by Minimising the Description Length , 2005, SCIA.

[53]  Martin A. Fischler,et al.  The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.

[54]  Christopher J. Taylor,et al.  Specificity as a Graph-Based Estimator of Cross-Entropy and KL Divergence , 2006, BMVC.

[55]  Anil K. Jain,et al.  Vehicle segmentation using deformable templates , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[56]  Nicholas Ayache,et al.  Fast segmentation, tracking, and analysis of deformable objects , 1993, 1993 (4th) International Conference on Computer Vision.

[57]  Demetri Terzopoulos,et al.  Deformable models , 2000, The Visual Computer.

[58]  J. Berge,et al.  Orthogonal procrustes rotation for two or more matrices , 1977 .

[59]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  Rhodri H. Davies,et al.  Learning Shape: Optimal Models for Analysing Natural Variability , 2004 .

[61]  Jerry L. Prince,et al.  Using a statistical shape model to extract sulcal curves on the outer cortex of the human brain , 2002, IEEE Transactions on Medical Imaging.

[62]  Rasmus Larsen,et al.  Analysis of Deformation of the Human Ear and Canal Caused by Mandibular Movement , 2007, MICCAI.

[63]  Philip N. Klein,et al.  On Aligning Curves , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  Klaus Baggesen Hilger,et al.  Statistical shape analysis using non-Euclidean metrics , 2003, Medical Image Anal..

[65]  Andrew Blake,et al.  A framework for spatiotemporal control in the tracking of visual contours , 1993, International Journal of Computer Vision.

[66]  U. Grenander,et al.  Structural Image Restoration through Deformable Templates , 1991 .

[67]  Joni-Kristian Kämäräinen,et al.  Object Class Detection Using Local Image Features and Point Pattern Matching Constellation Search , 2007, SCIA.

[68]  T. K. Carne,et al.  Shape and Shape Theory , 1999 .

[69]  Christopher J. Taylor,et al.  Non-parametric Surface-Based Regularisation for Building Statistical Shape Models , 2007, IPMI.

[70]  Alejandro F. Frangi,et al.  Active shape model segmentation with optimal features , 2002, IEEE Transactions on Medical Imaging.

[71]  Makoto Nagao,et al.  Line extraction and pattern detection in a photograph , 1969, Pattern Recognit..

[72]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[73]  Karl J. Friston,et al.  Image registration using a symmetric prior—in three dimensions , 1999, Human brain mapping.

[74]  Timothy F. Cootes,et al.  An Efficient Method for Constructing Optimal Statistical Shape Models , 2001, MICCAI.

[75]  Bernard Widrow,et al.  The "rubber-mask" technique-II. Pattern storage and recognition , 1973, Pattern Recognit..

[76]  Manolis I. A. Lourakis,et al.  Estimating the Jacobian of the Singular Value Decomposition: Theory and Applications , 2000, ECCV.

[77]  Michael Isard,et al.  Active Contours , 2000, Springer London.

[78]  Ulf Grenander,et al.  Hands: A Pattern Theoretic Study of Biological Shapes , 1990 .

[79]  Akshay K. Singh,et al.  Deformable models in medical image analysis , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[80]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[81]  C. Goodall Procrustes methods in the statistical analysis of shape , 1991 .

[82]  Timothy F. Cootes,et al.  Assessing the accuracy of non-rigid registration with and without ground truth , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[83]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[84]  Marvin Minsky,et al.  Steps toward Artificial Intelligence , 1995, Proceedings of the IRE.

[85]  Anil K. Jain,et al.  Representation and Recognition of Handwritten Digits Using Deformable Templates , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[86]  J. Gower Generalized procrustes analysis , 1975 .

[87]  Timothy F. Cootes,et al.  The Use of Active Shape Models for Locating Structures in Medical Images , 1993, IPMI.

[88]  Nicholas Ayache,et al.  Dense Non-Rigid Motion Estimation in Sequences of Medical Images Using Differential Constraints , 2004, International Journal of Computer Vision.

[89]  Jan Erik Solem Variational Problems and Level Set Methods in Computer Vision - Theory and Applications , 2006 .

[90]  Benjamin B. Kimia,et al.  Symmetry-Based Indexing of Image Databases , 1998, J. Vis. Commun. Image Represent..

[91]  Brian Mirtich,et al.  A Survey of Deformable Modeling in Computer Graphics , 1997 .

[92]  K. E. Chu,et al.  Derivatives of Eigenvalues and Eigenvectors of Matrix Functions , 1993, SIAM J. Matrix Anal. Appl..

[93]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[94]  David W. Jacobs,et al.  Linear fitting with missing data: applications to structure-from-motion and to characterizing intensity images , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[95]  Anders Ericsson Automatic Shape Modelling with Applications in Medical Imaging , 2006 .

[96]  Anders P. Eriksson,et al.  Robustness and specificity in object detection , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[97]  Anil K. Jain,et al.  Object localization using color, texture and shape , 2000, Pattern Recognit..

[98]  Lawrence H. Staib,et al.  Shape-based 3D surface correspondence using geodesics and local geometry , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[99]  Martin Styner,et al.  Evaluation of 3D Correspondence Methods for Model Building , 2003, IPMI.

[100]  Timothy F. Cootes,et al.  Statistical models of appearance for computer vision , 1999 .

[101]  Christopher J. Taylor,et al.  A Framework for Automatic Landmark Identification Using a New Method of Nonrigid Correspondence , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[102]  F. Bookstein Size and Shape Spaces for Landmark Data in Two Dimensions , 1986 .

[103]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[104]  Anand Rangarajan,et al.  Unsupervised learning of an Atlas from unlabeled point-sets , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[105]  Bjarne Kjær Ersbøll,et al.  Generative Interpretation of Medical Images , 2004 .

[106]  Evon C. Greanias,et al.  Design of Logic for Recognition of Printed Characters by Simulation , 1957, IBM J. Res. Dev..

[107]  Hans Henrik Thodberg,et al.  Minimum Description Length Shape and Appearance Models , 2003, IPMI.

[108]  R. Kimmel,et al.  Geodesic Active Contours , 1995, Proceedings of IEEE International Conference on Computer Vision.

[109]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[110]  Christopher J. Taylor,et al.  Kernel Principal Component Analysis and the construction of non-linear Active Shape Models , 2001, BMVC.

[111]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[112]  Jim Graham,et al.  Robust Active Shape Model Search , 2002, ECCV.

[113]  Xiangyang Ju,et al.  Constructing dense correspondences for the analysis of 3D facial morphology , 2006, Pattern Recognit. Lett..

[114]  Mario Fernando Montenegro Campos,et al.  Structural shape characterization via exploratory factor analysis , 2004, Artif. Intell. Medicine.

[115]  S. Vadlamani On the Diffusion of Shape , 2007 .

[116]  C. Studholme,et al.  Intensity Robust Viscous Fluid Deformation Based Morphometry Using Regionally Adapted Mutual Information , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[117]  Anil K. Jain,et al.  Deformable template models: A review , 1998, Signal Process..

[118]  Finn Lindgren,et al.  A pilot study of facial, cranial and brain MRI morphometry in men with schizophrenia: Part 2 , 2006, Psychiatry Research: Neuroimaging.

[119]  Alejandro F. Frangi,et al.  Automatic Construction of 3D Statistical Deformation Models of the Brain using Non-Rigid Registration , 2003, IEEE Trans. Medical Imaging.

[120]  Alberto Del Bimbo,et al.  Visual Image Retrieval by Elastic Matching of User Sketches , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[121]  Rachid Deriche,et al.  Region tracking through image sequences , 1995, Proceedings of IEEE International Conference on Computer Vision.

[122]  Henning Biermann,et al.  Recovering non-rigid 3D shape from image streams , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[123]  Timothy F. Cootes,et al.  Combining point distribution models with shape models based on finite element analysis , 1994, Image Vis. Comput..

[124]  Rasmus Larsen,et al.  Mahalanobis distance based iterative closest point , 2007, SPIE Medical Imaging.

[125]  D'arcy W. Thompson,et al.  On Growth and Form , 1917, Nature.

[126]  Rasmus Larsen,et al.  Sparse modeling of landmark and texture variability using the orthomax criterion , 2006, SPIE Medical Imaging.

[127]  Philip N. Klein,et al.  Constructing 2D curve atlases , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).

[128]  Timothy F. Cootes,et al.  A mixture model for representing shape variation , 1999, Image Vis. Comput..

[129]  John Beidler,et al.  Data Structures and Algorithms , 1996, Wiley Encyclopedia of Computer Science and Engineering.

[130]  Rasmus Larsen,et al.  Q-MAF Shape Decomposition , 2001, MICCAI.

[131]  Hrafnkel Eiriksson Shape representation alignment and dekomposition , 2001 .

[132]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[133]  Demetri Terzopoulos,et al.  Analysis and Synthesis of Facial Image Sequences Using Physical and Anatomical Models , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[134]  James C. Gee,et al.  Design of a Statistical Model of Brain Shape , 1997, IPMI.

[135]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[136]  C. Kambhamettu,et al.  Curvature-based approach to point correspondence recovery in conformal nonrigid motion , 1994 .

[137]  Kalle Åström,et al.  Minimizing the description length using steepest descent , 2003, BMVC.

[138]  Alejandro F. Frangi,et al.  Automatic Construction of 3D Statistical Deformation Models Using Non-rigid Registration , 2001, MICCAI.

[139]  Christopher J. Taylor,et al.  Automatic construction of eigenshape models by direct optimization , 1998, Medical Image Anal..

[140]  Guido Gerig,et al.  Elastic model-based segmentation of 3-D neuroradiological data sets , 1999, IEEE Transactions on Medical Imaging.