Subsystems of True Arithmetic and Hierarchies of Functions

Abstract Ratajczyk, Z., Subsystems of true arithmetic and hierarchies of functions, Annals of Pure and Applied Logic 64 (1993) 95–152. The combinatorial method coming from the study of combinatorial sentences independent of PA is developed. Basing on this method we present the detailed analysis of provably recursive functions associated with higher levels of transfinite induction, I(e α ), and analyze combinatorial sentences independent of I(e α ). Our treatment of combinatorial sentences differs from the one given by McAloon [18] and gives more natural sentences. The same method give also a combinatorial technique with no use of the cut-elimination theorem which is appropriate to study proof-theoretic strength of subsystems of first order arithmetic and some of their expansions. It was used to analyze iterated reflection principle and system of transfinite induction with a satisfaction class.

[1]  Ulf R. Schmerl A Fine Structure Generated by Reflection Formulas over Primitive Recursive Arithmetic , 1979 .

[2]  Stanley S. Wainer,et al.  Ordinal recursion, and a refinement of the extended Grzegorczyk hierarchy , 1972, Journal of Symbolic Logic.

[3]  Diana Schmidt Postscript to “built-up systems of fundamental sequences and hierarchies of number-theoretic functions” , 1977, Arch. Math. Log..

[4]  S. Wainer,et al.  Provably computable functions and the fast growing hierarchy , 1987 .

[5]  C. Smorynski The Incompleteness Theorems , 1977 .

[6]  Diana Schmidt,et al.  Built-up systems of fundamental sequences and hierarchies of number-theoretic functions , 1977, Arch. Math. Log..

[7]  G. Gentzen,et al.  Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie , 1943 .

[8]  Henryk Kotlarski,et al.  More on induction in the language with a satisfaction class , 1990, Math. Log. Q..

[9]  Henryk Kotlarski,et al.  Inductive Full Satisfaction Classes , 1990, Ann. Pure Appl. Log..

[10]  Solomon Feferman,et al.  Transfinite recursive progressions of axiomatic theories , 1962, Journal of Symbolic Logic.

[11]  Zygmunt Ratajczyk,et al.  Satisfaction Classes and Combinatorial Sentences Independent From PA , 1982, Math. Log. Q..

[12]  Solomon Feferman,et al.  Hilbert's program relativized; Proof-theoretical and foundational reductions , 1988, Journal of Symbolic Logic.

[13]  Kenneth Mcaloon Paris-Harrington incompleteness and progressions of theories , 1985 .

[14]  Petr Hájek,et al.  Combinatorial principles concerning approximations of functions , 1987, Arch. Math. Log..

[15]  Z. Ratajczyk A combinatorial analysis of functions provably recursive in $ΙΣ_n$ , 1988 .

[16]  S. Wainer,et al.  Hierarchies of number-theoretic functions. I , 1970 .

[17]  A. Grzegorczyk Some classes of recursive functions , 1964 .

[18]  Reijiro Kurata Pris-Harrington Theory and reflection Principles(LOGIC AND THE FOUNDATIONS OF MATHEMATICS) , 1984 .

[19]  Solomon Feferman,et al.  Systems of predicative analysis, II: Representations of ordinals , 1968, Journal of Symbolic Logic.

[20]  Solomon Feferman,et al.  Systems of predicative analysis , 1964, Journal of Symbolic Logic.

[21]  Georg Kreisel,et al.  On the interpretation of non-finitist proofs—Part I , 1951, Journal of Symbolic Logic.

[22]  Jeff B. Paris,et al.  A Hierarchy of Cuts in Models of Arithmetic , 1980 .

[23]  Z. Ratajczyk,et al.  Arithmetical transfinite induction and hierarchies of functions , 1992 .

[24]  Georg Kreisel,et al.  Reflection Principles and Their Use for Establishing the Complexity of Axiomatic Systems , 1968 .

[25]  Jan Mycielski,et al.  Locally finite theories , 1986, Journal of Symbolic Logic.

[26]  Jussi KETONENt,et al.  Rapidly growing Ramsey functions , 1981 .

[27]  Stanisław Krajewski Non-standard satisfaction classes , 1976 .