Experimental violation of Bell inequalities for multi-dimensional systems

Quantum correlations between spatially separated parts of a d-dimensional bipartite system (d ≥ 2) have no classical analog. Such correlations, also called entanglements, are not only conceptually important, but also have a profound impact on information science. In theory the violation of Bell inequalities based on local realistic theories for d-dimensional systems provides evidence of quantum nonlocality. Experimental verification is required to confirm whether a quantum system of extremely large dimension can possess this feature, however it has never been performed for large dimension. Here, we report that Bell inequalities are experimentally violated for bipartite quantum systems of dimensionality d = 16 with the usual ensembles of polarization-entangled photon pairs. We also estimate that our entanglement source violates Bell inequalities for extremely high dimensionality of d > 4000. The designed scenario offers a possible new method to investigate the entanglement of multipartite systems of large dimensionality and their application in quantum information processing.

[1]  P. Horodecki,et al.  Schmidt number for density matrices , 1999, quant-ph/9911117.

[2]  A. Vaziri,et al.  Experimental two-photon, three-dimensional entanglement for quantum communication. , 2002, Physical review letters.

[3]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[4]  S. Massar,et al.  Bell inequalities for arbitrarily high-dimensional systems. , 2001, Physical review letters.

[5]  Hsin-Pin Lo,et al.  Beamlike photon pairs entangled by a 2x2 fiber , 2011 .

[6]  Cheng-Zhi Peng,et al.  Observation of eight-photon entanglement , 2011, Nature Photonics.

[7]  Franco Nori,et al.  Testing Bell's inequality in a constantly coupled Josephson circuit by effective single-qubit operations , 2004, quant-ph/0408089.

[8]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[9]  Vogel,et al.  Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. , 1989, Physical review. A, General physics.

[10]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[11]  M. J. Padgett,et al.  Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement , 2012, 1205.1968.

[12]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[13]  Kai Chen,et al.  Verifying genuine high-order entanglement. , 2010, Physical review letters.

[14]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[15]  A. Vaziri,et al.  Experimental quantum cryptography with qutrits , 2005, quant-ph/0511163.

[16]  A. Zeilinger,et al.  Generation and confirmation of a (100 × 100)-dimensional entangled quantum system , 2013, Proceedings of the National Academy of Sciences.

[17]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[18]  R. Griffiths,et al.  Quantum-error-correcting codes using qudit graph states , 2007, 0712.1979.

[19]  Franco Nori,et al.  Entangled-state generation and Bell inequality violations in nanomechanical resonators , 2014, 1402.4900.

[20]  Jian-Wei Pan,et al.  Memory-built-in quantum teleportation with photonic and atomic qubits , 2007, 0705.1256.

[21]  Jian-Wei Pan,et al.  Entangled photons and quantum communication , 2010 .

[22]  Franco Nori,et al.  Macroscopic Einstein-Podolsky-Rosen pairs in superconducting circuits (9 pages) , 2006 .

[23]  Hsin-Pin Lo,et al.  Photon doughnut-shaped pair for easy production of entangled photon pairs , 2015 .

[24]  Jaroslav Rehacek,et al.  Maximum-likelihood methods in quantum mechanics , 2004 .

[25]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[26]  W. Son,et al.  Generic Bell inequalities for multipartite arbitrary dimensional systems. , 2005, Physical review letters.

[27]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[28]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[29]  S. Lloyd Enhanced Sensitivity of Photodetection via Quantum Illumination , 2008, Science.

[30]  Franco Nori,et al.  Bell's experiment with intra- and inter-pair entanglement: Single-particle mode entanglement as a case study , 2009, 0911.0990.

[31]  J. Fiurášek,et al.  3 Maximum-Likelihood Methods in Quantum Mechanics , 2004 .

[32]  Kai Chen,et al.  Experimental realization of one-way quantum computing with two-photon four-qubit cluster states. , 2007, Physical review letters.

[33]  Adetunmise C. Dada,et al.  Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities , 2011, 1104.5087.

[34]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[35]  M. Lewenstein,et al.  Schmidt number witnesses and bound entanglement , 2000, quant-ph/0009109.

[36]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[37]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[38]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 2005, Naturwissenschaften.

[39]  Zeilinger,et al.  Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits , 2000, Physical review letters.

[40]  Marek Zukowski,et al.  All-versus-nothing violation of local realism by two-photon, four-dimensional entanglement. , 2005, Physical review letters.

[41]  C. P. Sun,et al.  Quantum computation based on d-level cluster state (11 pages) , 2003, quant-ph/0304054.

[42]  Bo Zhao,et al.  Experimental quantum teleportation of a two-qubit composite system , 2006, quant-ph/0609129.

[43]  Hsin-Pin Lo,et al.  Beamlike photon-pair generation for two-photon interference and polarization entanglement , 2011 .