Terminal Guidance System for Satellite Rendezvous

This paper assumes a requirement for an unmanned multiunit satellite to be assembled in orbit. The requirement to be met is to bring the satellites together so tha t they do not collide but actually rendezvous. The equations of motion of the rendezvous satellite in a relative coordinate system are derived and used to compute a final injection velocity which would effect collision after a time r. The velocity is corrected periodically by a command guidance system and just before impact retrothrust is applied. A terminal infrared homing sj^stem is required to actually accomplish physical contact and joining of the satellites. The first satellite placed in orbit is the "control satellite" and controls all the satellites to be assembled and contains the ccmputer, command guidance equipment, precision orientation equipment, and other features necessary to effect rendezvous. The succeeding satellites contain a propulsion system, a rough at t i tude control system, and a command receiver plus whatever scientific equipment they carry to perform their basic mission. This paper presents the following: