Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae

[1]  Carlos Gancedo,et al.  Moonlighting Proteins in Yeasts , 2008, Microbiology and Molecular Biology Reviews.

[2]  Merja Penttilä,et al.  Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. , 2008, FEMS yeast research.

[3]  Carl Johan Franzén,et al.  Characterization of glucose transport mutants of Saccharomyces cerevisiae during a nutritional upshift reveals a correlation between metabolite levels and glycolytic flux. , 2008, FEMS yeast research.

[4]  Marcel J T Reinders,et al.  Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes. , 2007, Microbiology.

[5]  D. Hoyle,et al.  Growth control of the eukaryote cell: a systems biology study in yeast , 2007, Journal of biology.

[6]  Merja Penttilä,et al.  Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases , 2007, Applied Microbiology and Biotechnology.

[7]  Rafael A Irizarry,et al.  Exploration, normalization, and genotype calls of high-density oligonucleotide SNP array data. , 2006, Biostatistics.

[8]  Ole Winther,et al.  Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae , 2006, Genome Biology.

[9]  Jack T. Pronk,et al.  Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status , 2006, Antonie van Leeuwenhoek.

[10]  M. Johnston,et al.  Two Glucose-sensing Pathways Converge on Rgt1 to Regulate Expression of Glucose Transporter Genes in Saccharomyces cerevisiae* , 2006, Journal of Biological Chemistry.

[11]  P. Attfield,et al.  Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. , 2006, FEMS yeast research.

[12]  T. Jeffries,et al.  Engineering yeasts for xylose metabolism. , 2006, Current opinion in biotechnology.

[13]  M. Penttilä,et al.  Transcription analysis of recombinant Saccharomyces cerevisiae reveals novel responses to xylose , 2006, Applied biochemistry and biotechnology.

[14]  Mark Johnston,et al.  Integration of Transcriptional and Posttranslational Regulation in a Glucose Signal Transduction Pathway in Saccharomyces cerevisiae , 2006, Eukaryotic Cell.

[15]  L. McAlister-Henn,et al.  Sources of NADPH in Yeast Vary with Carbon Source* , 2005, Journal of Biological Chemistry.

[16]  Paul Christakopoulos,et al.  Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains. , 2005, Metabolic engineering.

[17]  Jack T Pronk,et al.  Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. , 2005, FEMS yeast research.

[18]  Pilar Herrero,et al.  Rgt1, a glucose sensing transcription factor, is required for transcriptional repression of the HXK2 gene in Saccharomyces cerevisiae. , 2005, The Biochemical journal.

[19]  B. Hahn-Hägerdal,et al.  Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering , 2005, Yeast.

[20]  E. Rubenstein,et al.  Snf1 kinase complexes with different beta subunits display stress-dependent preferences for the three Snf1-activating kinases , 2005, Current Genetics.

[21]  Jack T Pronk,et al.  Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. , 2005, FEMS yeast research.

[22]  M. Penttilä,et al.  Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain , 2005, Applied Microbiology and Biotechnology.

[23]  David Botstein,et al.  GO: : TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes , 2004, Bioinform..

[24]  Stefan Hohmann,et al.  Transcriptional responses to glucose at different glycolytic rates in Saccharomyces cerevisiae. , 2004, European journal of biochemistry.

[25]  Yong-Su Jin,et al.  Saccharomyces cerevisiae Engineered for Xylose Metabolism Exhibits a Respiratory Response , 2004, Applied and Environmental Microbiology.

[26]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[27]  S. Dequin,et al.  Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: the NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation. , 2004, Microbiology.

[28]  Uwe Sauer,et al.  Molecular Basis for Anaerobic Growth of Saccharomyces cerevisiae on Xylose, Investigated by Global Gene Expression and Metabolic Flux Analysis , 2004, Applied and Environmental Microbiology.

[29]  J. Pronk,et al.  Role of Transcriptional Regulation in Controlling Fluxes in Central Carbon Metabolism of Saccharomyces cerevisiae , 2004, Journal of Biological Chemistry.

[30]  J. Pronk,et al.  Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. , 2004, FEMS yeast research.

[31]  Mark Johnston,et al.  Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  C. Roca,et al.  Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae , 2004, Applied Microbiology and Biotechnology.

[33]  M. Penttilä,et al.  Engineering Redox Cofactor Regeneration for Improved Pentose Fermentation in Saccharomyces cerevisiae , 2003, Applied and Environmental Microbiology.

[34]  J. Gancedo,et al.  Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae , 2003, Archives of Microbiology.

[35]  Trey Ideker,et al.  Multiple Pathways Are Co-regulated by the Protein Kinase Snf1 and the Transcription Factors Adr1 and Cat8* , 2003, Journal of Biological Chemistry.

[36]  Gunnar Lidén,et al.  Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae. , 2003, Biotechnology and bioengineering.

[37]  Yee-Chun Chen,et al.  Functional Characterization and Localization of Acetyl-CoA Hydrolase, Ach1p, in Saccharomyces cerevisiae * , 2003, The Journal of Biological Chemistry.

[38]  Merja Penttilä,et al.  Proteome analysis of recombinant xylose‐fermenting Saccharomyces cerevisiae , 2003, Yeast.

[39]  T. Speed,et al.  Summaries of Affymetrix GeneChip probe level data. , 2003, Nucleic acids research.

[40]  W. V. van Zyl,et al.  Molecular Analysis of a Saccharomyces cerevisiae Mutant with Improved Ability To Utilize Xylose Shows Enhanced Expression of Proteins Involved in Transport, Initial Xylose Metabolism, and the Pentose Phosphate Pathway , 2003, Applied and Environmental Microbiology.

[41]  A I Saeed,et al.  TM4: a free, open-source system for microarray data management and analysis. , 2003, BioTechniques.

[42]  E. Boles,et al.  Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. , 2002, Microbiology.

[43]  S. Howell,et al.  In Vivo and in Vitro Phosphorylation of Two Isoforms of Yeast Pyruvate Kinase by Protein Kinase A* , 2002, The Journal of Biological Chemistry.

[44]  Filip Rolland,et al.  Glucose-sensing and -signalling mechanisms in yeast. , 2002, FEMS yeast research.

[45]  B. Hahn-Hägerdal,et al.  The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae , 2001 .

[46]  K. Walther,et al.  Adr1 and Cat8 synergistically activate the glucose-regulated alcohol dehydrogenase gene ADH2 of the yeast Saccharomyces cerevisiae. , 2001, Microbiology.

[47]  M Penttilä,et al.  Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. , 2001, Metabolic engineering.

[48]  P. Herrero,et al.  The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. , 2001, The Biochemical journal.

[49]  M. Carlson,et al.  Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. , 2001, Genes & development.

[50]  B. Hahn-Hägerdal,et al.  Intracellular fluxes in a recombinant xylose-utilizing Saccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations. , 2001, Biotechnology and bioengineering.

[51]  J. D. de Winde,et al.  Glucose‐induced cAMP signalling in yeast requires both a G‐protein coupled receptor system for extracellular glucose detection and a separable hexose kinase‐dependent sensing process , 2000, Molecular microbiology.

[52]  M. Penttilä,et al.  The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism. , 2000, FEMS microbiology letters.

[53]  N. Socci,et al.  Leptin-specific patterns of gene expression in white adipose tissue. , 2000, Genes & development.

[54]  Mark Johnston,et al.  Function and Regulation of Yeast Hexose Transporters , 1999, Microbiology and Molecular Biology Reviews.

[55]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[56]  J. Gancedo Yeast Carbon Catabolite Repression , 1998, Microbiology and Molecular Biology Reviews.

[57]  F Moreno,et al.  Hexokinase PII has a double cytosolic‐nuclear localisation in Saccharomyces cerevisiae , 1998, FEBS letters.

[58]  J. Hirsch,et al.  GPR1 encodes a putative G protein‐coupled receptor that associates with the Gpa2p Gα subunit and functions in a Ras‐independent pathway , 1998, The EMBO journal.

[59]  B. Hahn-Hägerdal,et al.  Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation , 1997, Applied Microbiology and Biotechnology.

[60]  R. Planta,et al.  Signalling pathways leading to transcriptional regulation of genes involved in the activation of glycolysis in yeast , 1997, Molecular microbiology.

[61]  H. Liang,et al.  A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6. , 1996, Molecular biology of the cell.

[62]  S. Wölfl,et al.  Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[63]  M. Johnston,et al.  Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression , 1996, Molecular and cellular biology.

[64]  Hinrich W. H. Göhlmann,et al.  Cloning of a second gene encoding 6‐phosphofructo‐2‐kinase in yeast, and characterization of mutant strains without fructose‐2,6‐bisphosphate , 1996, Molecular microbiology.

[65]  L. Ruohonen,et al.  Modifications to the ADH1 promoter of Saccharomyces cerevisiae for efficient production of heterologous proteins. , 1995, Journal of biotechnology.

[66]  P. Kötter,et al.  Xylose fermentation by Saccharomyces cerevisiae , 1993, Applied Microbiology and Biotechnology.

[67]  K. Entian,et al.  Studies on the regulation of enolases and compartmentation of cytosolic enzymes in Saccharomyces cerevisiae. , 1987, Biochimica et biophysica acta.

[68]  Lisbeth Olsson,et al.  A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae , 2007, Biotechnology and bioengineering.

[69]  F. Zimmermann,et al.  Induction of pyruvate decarboxylase in glycolysis mutants of Saccharomyces cerevisiae correlates with the concentrations of three-carbon glycolytic metabolites , 2004, Archives of Microbiology.

[70]  Merja Penttilä,et al.  Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. , 2003, Metabolic engineering.

[71]  S. Ozcan Two different signals regulate repression and induction of gene expression by glucose. , 2002, The Journal of biological chemistry.

[72]  Nicola J. Rinaldi,et al.  Supporting online material for : Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002 .

[73]  Michael E. Cusick,et al.  The Yeast Proteome Database (YPD) and Caenorhabditis elegans Proteome Database (WormPD): comprehensive resources for the organization and comparison of model organism protein information , 2000, Nucleic Acids Res..

[74]  M. Johnston,et al.  Feasting, fasting and fermenting. Glucose sensing in yeast and other cells. , 1999, Trends in genetics : TIG.

[75]  J. Nielsen,et al.  Glucose control in Saccharomyces cerevisiae: the role of Mig1 in metabolic functions. , 1998, Microbiology.

[76]  M. Ashburner A Laboratory manual , 1989 .

[77]  R. Payne,et al.  Yeasts: Characteristics and Identification , 1983 .

[78]  Gerald R. Fink,et al.  Methods in Yeast Genetics: Laboratory Manual , 1981 .

[79]  G. Fink,et al.  Methods in yeast genetics , 1979 .