A Hot Spot Proof of the Generalized Wall Theorem
暂无分享,去创建一个
[1] S. S. Pillai,et al. On normal numbers , 1939 .
[2] M. Borel. Les probabilités dénombrables et leurs applications arithmétiques , 1909 .
[3] On the Pyatetskii-Shapiro Criterion of Normality , 2003 .
[4] J. Cigler. Der individuelle Ergodensatz in der Theorie der Gleichverteilung mod 1. , 1960 .
[5] David H. Bailey,et al. A Strong Hot Spot Theorem , 2006 .
[6] Harry Furstenberg,et al. Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation , 1967, Mathematical systems theory.
[7] T. Kamae. Subsequences of normal sequences , 1973 .
[8] B. Weiss. Single Orbit Dynamics , 1999 .
[9] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[10] Alfred J. van der Poorten,et al. Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..
[11] H. Weyl. Über die Gleichverteilung von Zahlen mod. Eins , 1916 .
[12] Adrian-Maria Scheerer. On the continued fraction expansion of absolutely normal numbers , 2017, 1701.07979.
[13] J. Shallit,et al. Automatic Sequences: Contents , 2003 .
[14] Jean Berstel. Review of "Automatic sequences: theory, applications, generalizations" by Jean-Paul Allouche and Jeffrey Shallit. Cambridge University Press. , 2004, SIGA.
[15] Gérard Rauzy,et al. Représentation géométrique de suites de complexité $2n+1$ , 1991 .
[16] V. Bergelson,et al. Joint ergodicity along generalized linear functions , 2014, Ergodic Theory and Dynamical Systems.
[17] G. Rauzy. Nombres normaux et processus déterministes , 1976 .
[18] Combinatorial Proof of the Hot Spot Theorem , 2006 .
[19] A. Besicovitch. The asymptotic distribution of the numerals in the decimal representation of the squares of the natural numbers , 1935 .
[20] P. Erdös,et al. Note on normal numbers , 1946 .
[21] Reinhard Winkler,et al. Complexity of Hartman sequences , 2005 .
[22] I. Shkredov. On the pyatetskii-shapiro normality criterion for continued fractions , 2012 .
[23] Jeffrey Shallit,et al. Automatic Sequences by Jean-Paul Allouche , 2003 .
[24] Symbolic dynamics , 2008, Scholarpedia.