A Hot Spot Proof of the Generalized Wall Theorem

Abstract If a sequence of numbers behaves like a random sequence, do we expect subsequences to also behave like a random sequence? Wall proved that normality of a base-b expansion is preserved along arithmetic progressions. What makes arithmetic progressions special is that they are deterministic sequences, a type of low-complexity sequence. We give a self-contained proof that selection along deterministic sequences preserves normality and provide several interesting examples of nontrivial deterministic sequences.

[1]  S. S. Pillai,et al.  On normal numbers , 1939 .

[2]  M. Borel Les probabilités dénombrables et leurs applications arithmétiques , 1909 .

[3]  On the Pyatetskii-Shapiro Criterion of Normality , 2003 .

[4]  J. Cigler Der individuelle Ergodensatz in der Theorie der Gleichverteilung mod 1. , 1960 .

[5]  David H. Bailey,et al.  A Strong Hot Spot Theorem , 2006 .

[6]  Harry Furstenberg,et al.  Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation , 1967, Mathematical systems theory.

[7]  T. Kamae Subsequences of normal sequences , 1973 .

[8]  B. Weiss Single Orbit Dynamics , 1999 .

[9]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[10]  Alfred J. van der Poorten,et al.  Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..

[11]  H. Weyl Über die Gleichverteilung von Zahlen mod. Eins , 1916 .

[12]  Adrian-Maria Scheerer On the continued fraction expansion of absolutely normal numbers , 2017, 1701.07979.

[13]  J. Shallit,et al.  Automatic Sequences: Contents , 2003 .

[14]  Jean Berstel Review of "Automatic sequences: theory, applications, generalizations" by Jean-Paul Allouche and Jeffrey Shallit. Cambridge University Press. , 2004, SIGA.

[15]  Gérard Rauzy,et al.  Représentation géométrique de suites de complexité $2n+1$ , 1991 .

[16]  V. Bergelson,et al.  Joint ergodicity along generalized linear functions , 2014, Ergodic Theory and Dynamical Systems.

[17]  G. Rauzy Nombres normaux et processus déterministes , 1976 .

[18]  Combinatorial Proof of the Hot Spot Theorem , 2006 .

[19]  A. Besicovitch The asymptotic distribution of the numerals in the decimal representation of the squares of the natural numbers , 1935 .

[20]  P. Erdös,et al.  Note on normal numbers , 1946 .

[21]  Reinhard Winkler,et al.  Complexity of Hartman sequences , 2005 .

[22]  I. Shkredov On the pyatetskii-shapiro normality criterion for continued fractions , 2012 .

[23]  Jeffrey Shallit,et al.  Automatic Sequences by Jean-Paul Allouche , 2003 .

[24]  Symbolic dynamics , 2008, Scholarpedia.