Optical properties of wurtzite and rock-salt ZnO under pressure

Abstract This paper reports on the pressure dependence of the optical absorption edge of ZnO in the wurtzite and rock-salt phase, up to 14 GPa. Both vapor-phase monocrystals and pulsed-laser-deposition thin films have been investigated. In both types of samples the wurtzite to rock-salt transition is observed at 9.7±0.2 GPa. The absorption tail of the fundamental gap, as measured in monocrystals, exhibits a pressure coefficient of 24.5±2 meV/GPa. The evolution under pressure of the full absorption edge of the wurtzite phase is studied with thin film samples, yielding a slightly lower pressure coefficient (23.0±0.5 meV/GPa for the A–B exciton). Rock-salt ZnO is shown to be an indirect semiconductor with a bandgap of 2.7±0.2 eV. At higher photon energy a direct transition (Egd–4.5 eV) can be also identified in thin films transited to the rock-salt phase. Results on the high-pressure phase are interpreted on the basis of density-functional-theory (DFT) electronic structure calculations.

[1]  W. Y. Liang,et al.  Transmission Spectra of ZnO Single Crystals , 1968 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  J. Muth,et al.  Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition , 1999 .

[4]  Z. Ren,et al.  Quasiparticle band structures of wurtzite and rock-salt ZnO , 2002 .

[5]  Denis L. Rousseau,et al.  First-Order Raman Effect in Wurtzite-Type Crystals , 1969 .

[6]  R. Helbig Über die züchtung von grösseren reinen und dotierten ZnO-kristallen aus der gasphase , 1972 .

[7]  J. J. Hopfdeld Fine structure in the optical absorption edge of anisotropic crystals , 1960 .

[8]  R. Roy,et al.  New High-Pressure Polymorph of Zinc Oxide , 1962, Science.

[9]  R. Pandey,et al.  Compressibility of the high-pressure rocksalt phase of ZnO , 1998 .

[10]  U. Chatterjee,et al.  Effect of unconventional feeds on production cost, growth performance and expression of quantitative genes in growing pigs , 2022, Journal of the Indonesian Tropical Animal Agriculture.

[11]  D. Huffman,et al.  Use of smoke samples in diamond-anvil cells to measure pressure dependence of optical spectra: Application to the ZnO exciton , 1982 .

[12]  Andrew G. Glen,et al.  APPL , 2001 .

[13]  R. J. Elliott,et al.  Intensity of Optical Absorption by Excitons , 1957 .

[14]  P. Loubeyre,et al.  The membrane diamond anvil cell: A new device for generating continuous pressure and temperature variations , 1988 .

[15]  M. J. Herrera-Cabrera,et al.  Optical properties and electronic structure of rock-salt ZnO under pressure , 2003 .

[16]  Stanley Block,et al.  Calibration of the pressure dependence of the R1 ruby fluorescence line to 195 kbar , 1975 .

[17]  S. Desgreniers,et al.  High-density phases of ZnO: Structural and compressive parameters , 1998 .

[18]  A. Polian,et al.  Trapping of cubic ZnO nanocrystallites at ambient conditions , 2002 .

[19]  Wei,et al.  Role of metal d states in II-VI semiconductors. , 1988, Physical review. B, Condensed matter.

[20]  D. Langer,et al.  Pressure coefficient of the ZnO band-to-band transition , 1966 .

[21]  Pandey,et al.  Electronic structure of the rocksalt-structure semiconductors ZnO and CdO. , 1991, Physical review. B, Condensed matter.

[22]  Physics Letters , 1962, Nature.

[23]  Klaus Reimann,et al.  Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure , 1995 .

[24]  H. Ohta,et al.  UV-emitting diode composed of transparent oxide semiconductors: p-SrCu/sub 2/O/sub 2//n-ZnO , 2000 .

[25]  Steiner,et al.  Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures. , 1996, Physical review. B, Condensed matter.

[26]  B. Tell,et al.  Raman Effect in Zinc Oxide , 1966 .

[27]  R. Lauck,et al.  Effect of Pressure on Phonon Modes in Wurtzite Zinc Oxide , 2002 .