On the Relationship Between Stability of Extreme Order Statistics and Convergence of the Maximum Likelihood Kernel Density Estimate

BY MICHEL BRONIATOWSKI, PAUL DEHEUVELS AND LUC DEVROYEIUniversite Pierre et Marie Curie, Universite Pierre et Marie Curie andMcGill UniversityLet f be a density on the real line and let f,~ be the kernel estimate of fin which the smoothing factor is obtained by maximizing the cross-validatedlikelihood product according to the method of Duin and Habbema, Hermansand Vandenbroek. Under mild regularity conditions on the kernel and f, weshow, among other things that f Jf,~ - f ( --~ 0 almost surely if and only if thesample extremes of f are strongly stable.

[1]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .

[2]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[3]  O. Barndorff-Nielsen ON THE RATE OF GROWTH OF THE PARTIAL MAXIMA OF A SEQUENCE OF INDEPENDENT, IDENTICALLY DISTRIBUTED RANDOM VARIABLES , 1961 .

[4]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[5]  L.F.M. deHaan On regular variation and its application to the weak convergence of sample extremes , 1970 .

[6]  Laurens de Haan,et al.  On regular variation and its application to the weak convergence of sample extremes , 1973 .

[7]  A. Hordijk,et al.  The Rate of Growth of Sample Maxima , 1972 .

[8]  S. Resnick,et al.  Almost sure stability of maxima , 1973, Journal of Applied Probability.

[9]  J. Habbema A stepwise discriminant analysis program using density estimetion , 1974 .

[10]  E. Csáki Some notes on the law of the iterated logarithm for empirical distribution function , 1975 .

[11]  E. Seneta Regularly varying functions , 1976 .

[12]  Robert P. W. Duin,et al.  On the Choice of Smoothing Parameters for Parzen Estimators of Probability Density Functions , 1976, IEEE Transactions on Computers.

[13]  J. Wellner Limit theorems for the ratio of the empirical distribution function to the true distribution function , 1978 .

[14]  R. Laha Probability Theory , 1979 .

[15]  E. F. Schuster,et al.  On the Nonconsistency of Maximum Likelihood Nonparametric Density Estimators , 1981 .

[16]  Peter Hall,et al.  Cross-validation in density estimation , 1982 .

[17]  L. Devroye On arbitrarily slow rates of global convergence in density estimation , 1983 .

[18]  Paul Deheuvels,et al.  Strong Limit Theorems for Maximal Spacings from a General Univariate Distribution , 1984 .

[19]  Luc Devroye,et al.  The Consistency of Automatic Kernel Density Estimates , 1984 .

[20]  Trevor J. Sweeting,et al.  On Domains of Uniform Local Attraction in Extreme Value Theory , 1985 .

[21]  J. Marron An Asymptotically Efficient Solution to the Bandwidth Problem of Kernel Density Estimation , 1985 .

[22]  Paul Deheuvels,et al.  On the influence of the extremes of an i.i.d. sequence on the maximal spacings , 1986 .

[23]  On the use of compactly supported density estimates in problems of discrimination , 1987 .

[24]  L. Devroye,et al.  Nonparametric density estimation : the L[1] view , 1987 .

[25]  P. Hall On Kullback-Leibler loss and density estimation , 1987 .

[26]  L. Devroye The kernel estimate is relatively stable , 1988 .

[27]  S.,et al.  CONSISTENT CROSS-VALIDATED DENSITY ESTIMATION , 2022 .