Hyper-differential sensitivity analysis for inverse problems constrained by partial differential equations
暂无分享,去创建一个
[1] J. Marsden,et al. Elementary classical analysis , 1974 .
[2] Andrej Pázman,et al. Foundations of Optimum Experimental Design , 1986 .
[3] C. Vogel. Computational Methods for Inverse Problems , 1987 .
[4] A. Ambrosetti,et al. A primer of nonlinear analysis , 1993 .
[5] W. Näther. Optimum experimental designs , 1994 .
[6] Hans Bock,et al. Numerical methods for optimum experimental design in DAE systems , 2000 .
[7] A. Walther,et al. Parametric sensitivities for optimal control problems using automatic differentiation , 2003 .
[8] D. Ucinski. Optimal measurement methods for distributed parameter system identification , 2004 .
[9] Roland Griesse,et al. Parametric Sensitivity Analysis in Optimal Control of a Reaction Diffusion System. I. Solution Differentiability , 2004 .
[10] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[11] Roland Griesse,et al. Parametric sensitivity analysis in optimal control of a reaction-diffusion system – part II: practical methods and examples , 2004, Optim. Methods Softw..
[12] E. Somersalo,et al. Statistical and computational inverse problems , 2004 .
[13] Johannes P. Schlöder,et al. Numerical methods for optimal control problems in design of robust optimal experiments for nonlinear dynamic processes , 2004, Optim. Methods Softw..
[14] R. Griesse,et al. Parametric Sensitivity Analysis of Perturbed PDE Optimal Control Problems with State and Control Constraints , 2006 .
[15] David E. Keyes,et al. Parallel Algorithms for PDE-Constrained Optimization , 2006, Parallel Processing for Scientific Computing.
[16] R. Griesse,et al. Quantitative stability analysis of optimal solutions in PDE-constrained optimization , 2007 .
[17] Boris Vexler,et al. Numerical Sensitivity Analysis for the Quantity of Interest in PDE-Constrained Optimization , 2007, SIAM J. Sci. Comput..
[18] E. Haber,et al. Numerical methods for experimental design of large-scale linear ill-posed inverse problems , 2008 .
[19] E. Haber,et al. Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems , 2010 .
[20] E. Haber,et al. Optimal Experimental Design for the Large‐Scale Nonlinear Ill‐Posed Problem of Impedance Imaging , 2010 .
[21] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[22] N. Petra,et al. Model Variational Inverse Problems Governed by Partial Differential Equations , 2011 .
[23] Tan Bui-Thanh,et al. A Gentle Tutorial on Statistical Inversion using the Bayesian Paradigm , 2012 .
[24] Raul Tempone,et al. Fast estimation of expected information gains for Bayesian experimental designs based on Laplace approximations , 2013 .
[25] Xun Huan,et al. Simulation-based optimal Bayesian experimental design for nonlinear systems , 2011, J. Comput. Phys..
[26] H. Bock,et al. Parameter Estimation and Optimum Experimental Design for Differential Equation Models , 2013 .
[27] Bangti Jin,et al. Inverse Problems , 2014, Series on Applied Mathematics.
[28] Georg Stadler,et al. A-Optimal Design of Experiments for Infinite-Dimensional Bayesian Linear Inverse Problems with Regularized ℓ0-Sparsification , 2013, SIAM J. Sci. Comput..
[29] Quan Long,et al. Fast Bayesian Optimal Experimental Design for Seismic Source Inversion , 2015, 1502.07873.
[30] Lea Fleischer,et al. Regularization of Inverse Problems , 1996 .
[31] Georg Stadler,et al. A Fast and Scalable Method for A-Optimal Design of Experiments for Infinite-dimensional Bayesian Nonlinear Inverse Problems , 2014, SIAM J. Sci. Comput..
[32] A. Stuart,et al. The Bayesian Approach to Inverse Problems , 2013, 1302.6989.
[33] Arvind K. Saibaba,et al. Efficient D-Optimal Design of Experiments for Infinite-Dimensional Bayesian Linear Inverse Problems , 2018, SIAM J. Sci. Comput..
[34] A. Alexanderian,et al. Optimal experimental design under irreducible uncertainty for linear inverse problems governed by PDEs , 2019, Inverse Problems.
[35] HYPERDIFFERENTIAL SENSITIVITY ANALYSIS OF UNCERTAIN PARAMETERS IN PDE-CONSTRAINED OPTIMIZATION , 2019, International Journal for Uncertainty Quantification.