Hyper-differential sensitivity analysis for inverse problems constrained by partial differential equations

High fidelity models used in many science and engineering applications couple multiple physical states and parameters. Inverse problems arise when a model parameter cannot be determined directly, but rather is estimated using (typically sparse and noisy) measurements of the states. The data is usually not sufficient to simultaneously inform all of the parameters. Consequently, the governing model typically contains parameters which are uncertain but must be specified for a complete model characterization necessary to invert for the parameters of interest. We refer to the combination of the additional model parameters (those which are not inverted for) and the measured data states as the "complementary parameters". We seek to quantify the relative importance of these complementary parameters to the solution of the inverse problem. To address this, we present a framework based on hyper-differential sensitivity analysis (HDSA). HDSA computes the derivative of the solution of an inverse problem with respect to complementary parameters. We present a mathematical framework for HDSA in large-scale PDE-constrained inverse problems and show how HDSA can be interpreted to give insight about the inverse problem. We demonstrate the effectiveness of the method on an inverse problem by estimating a permeability field, using pressure and concentration measurements, in a porous medium flow application with uncertainty in the boundary conditions, source injection, and diffusion coefficient.

[1]  J. Marsden,et al.  Elementary classical analysis , 1974 .

[2]  Andrej Pázman,et al.  Foundations of Optimum Experimental Design , 1986 .

[3]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[4]  A. Ambrosetti,et al.  A primer of nonlinear analysis , 1993 .

[5]  W. Näther Optimum experimental designs , 1994 .

[6]  Hans Bock,et al.  Numerical methods for optimum experimental design in DAE systems , 2000 .

[7]  A. Walther,et al.  Parametric sensitivities for optimal control problems using automatic differentiation , 2003 .

[8]  D. Ucinski Optimal measurement methods for distributed parameter system identification , 2004 .

[9]  Roland Griesse,et al.  Parametric Sensitivity Analysis in Optimal Control of a Reaction Diffusion System. I. Solution Differentiability , 2004 .

[10]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[11]  Roland Griesse,et al.  Parametric sensitivity analysis in optimal control of a reaction-diffusion system – part II: practical methods and examples , 2004, Optim. Methods Softw..

[12]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[13]  Johannes P. Schlöder,et al.  Numerical methods for optimal control problems in design of robust optimal experiments for nonlinear dynamic processes , 2004, Optim. Methods Softw..

[14]  R. Griesse,et al.  Parametric Sensitivity Analysis of Perturbed PDE Optimal Control Problems with State and Control Constraints , 2006 .

[15]  David E. Keyes,et al.  Parallel Algorithms for PDE-Constrained Optimization , 2006, Parallel Processing for Scientific Computing.

[16]  R. Griesse,et al.  Quantitative stability analysis of optimal solutions in PDE-constrained optimization , 2007 .

[17]  Boris Vexler,et al.  Numerical Sensitivity Analysis for the Quantity of Interest in PDE-Constrained Optimization , 2007, SIAM J. Sci. Comput..

[18]  E. Haber,et al.  Numerical methods for experimental design of large-scale linear ill-posed inverse problems , 2008 .

[19]  E. Haber,et al.  Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems , 2010 .

[20]  E. Haber,et al.  Optimal Experimental Design for the Large‐Scale Nonlinear Ill‐Posed Problem of Impedance Imaging , 2010 .

[21]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[22]  N. Petra,et al.  Model Variational Inverse Problems Governed by Partial Differential Equations , 2011 .

[23]  Tan Bui-Thanh,et al.  A Gentle Tutorial on Statistical Inversion using the Bayesian Paradigm , 2012 .

[24]  Raul Tempone,et al.  Fast estimation of expected information gains for Bayesian experimental designs based on Laplace approximations , 2013 .

[25]  Xun Huan,et al.  Simulation-based optimal Bayesian experimental design for nonlinear systems , 2011, J. Comput. Phys..

[26]  H. Bock,et al.  Parameter Estimation and Optimum Experimental Design for Differential Equation Models , 2013 .

[27]  Bangti Jin,et al.  Inverse Problems , 2014, Series on Applied Mathematics.

[28]  Georg Stadler,et al.  A-Optimal Design of Experiments for Infinite-Dimensional Bayesian Linear Inverse Problems with Regularized ℓ0-Sparsification , 2013, SIAM J. Sci. Comput..

[29]  Quan Long,et al.  Fast Bayesian Optimal Experimental Design for Seismic Source Inversion , 2015, 1502.07873.

[30]  Lea Fleischer,et al.  Regularization of Inverse Problems , 1996 .

[31]  Georg Stadler,et al.  A Fast and Scalable Method for A-Optimal Design of Experiments for Infinite-dimensional Bayesian Nonlinear Inverse Problems , 2014, SIAM J. Sci. Comput..

[32]  A. Stuart,et al.  The Bayesian Approach to Inverse Problems , 2013, 1302.6989.

[33]  Arvind K. Saibaba,et al.  Efficient D-Optimal Design of Experiments for Infinite-Dimensional Bayesian Linear Inverse Problems , 2018, SIAM J. Sci. Comput..

[34]  A. Alexanderian,et al.  Optimal experimental design under irreducible uncertainty for linear inverse problems governed by PDEs , 2019, Inverse Problems.

[35]  HYPERDIFFERENTIAL SENSITIVITY ANALYSIS OF UNCERTAIN PARAMETERS IN PDE-CONSTRAINED OPTIMIZATION , 2019, International Journal for Uncertainty Quantification.