Energy-efficient collaborative optimization for VM scheduling in cloud computing

[1]  Albert Y. Zomaya,et al.  A Multi-Objective Optimization Scheme for Job Scheduling in Sustainable Cloud Data Centers , 2022, IEEE Transactions on Cloud Computing.

[2]  David Atienza,et al.  MAGNETIC: Multi-Agent Machine Learning-Based Approach for Energy Efficient Dynamic Consolidation in Data Centers , 2019, IEEE Transactions on Services Computing.

[3]  Fagui Liu,et al.  Energy-efficient VM scheduling based on deep reinforcement learning , 2021, Future Gener. Comput. Syst..

[4]  Said El Kafhali,et al.  Energy-efficient strategy for virtual machine consolidation in cloud environment , 2020, Soft Comput..

[5]  Bo Cheng,et al.  Availability-Aware and Energy-Efficient Virtual Cluster Allocation Based on Multi-Objective Optimization in Cloud Datacenters , 2020, IEEE Transactions on Network and Service Management.

[6]  Hossein Monshizadeh Naeen,et al.  Adaptive Markov‐based approach for dynamic virtual machine consolidation in cloud data centers with quality‐of‐service constraints , 2020 .

[7]  Xiuqi Li,et al.  Multi-objective optimization for rebalancing virtual machine placement , 2017, Future Gener. Comput. Syst..

[8]  Habib Youssef,et al.  Fuzzy-logic-based multi-objective best-fit-decreasing virtual machine reallocation , 2019, The Journal of Supercomputing.

[9]  Vijay Sivaraman,et al.  Classifying IoT Devices in Smart Environments Using Network Traffic Characteristics , 2019, IEEE Transactions on Mobile Computing.

[10]  Yang Hong,et al.  Learn-as-you-go with Megh: Efficient Live Migration of Virtual Machines , 2019, IEEE Transactions on Parallel and Distributed Systems.

[11]  Mauro Iacono,et al.  Exploiting CloudSim in a multiformalism modeling approach for cloud based systems , 2019, Simul. Model. Pract. Theory.

[12]  Pawan Kumar,et al.  Issues and Challenges of Load Balancing Techniques in Cloud Computing , 2019, ACM Comput. Surv..

[13]  Muhammad Arshad Islam,et al.  Investigation of Cloud Scheduling Algorithms for Resource Utilization Using CloudSim , 2019, Comput. Informatics.

[14]  José Ranilla,et al.  Improving the energy efficiency of virtual data centers in an IT service provider through proactive fuzzy rules-based multicriteria decision making , 2018, The Journal of Supercomputing.

[15]  Thomas Stützle,et al.  Ant Colony Optimization: Overview and Recent Advances , 2018, Handbook of Metaheuristics.

[16]  Leila Ismail,et al.  Energy-Aware VM Placement and Task Scheduling in Cloud-IoT Computing: Classification and Performance Evaluation , 2018, IEEE Internet of Things Journal.

[17]  Paulo Romero Martins Maciel,et al.  Models for availability and power consumption evaluation of a private cloud with VMM rejuvenation enabled by VM Live Migration , 2018, The Journal of Supercomputing.

[18]  Nadjia Kara,et al.  An energy efficient and SLA compliant approach for resource allocation and consolidation in cloud computing environments , 2018, Sustain. Comput. Informatics Syst..

[19]  Jie Zheng,et al.  Energy efficient job scheduling with workload prediction on cloud data center , 2018, Cluster Computing.

[20]  P. Balasubramanie,et al.  An efficient performance evaluation model for the resource clusters in cloud environment using continuous time Markov chain and Poisson process , 2018, Cluster Computing.

[21]  Dimitrios Tzovaras,et al.  Energy modeling in cloud simulation frameworks , 2018, Future Gener. Comput. Syst..

[22]  Ivan Porres,et al.  Multi-objective dynamic virtual machine consolidation in the cloud using ant colony system , 2017, Int. J. Parallel Emergent Distributed Syst..

[23]  Sam Jabbehdari,et al.  An autonomic resource provisioning approach for service-based cloud applications: A hybrid approach , 2018, Future Gener. Comput. Syst..

[24]  Rajkumar Buyya,et al.  Dynamic virtual machine consolidation algorithms for energy-efficient cloud resource management: a review , 2018 .

[25]  Shahin Vakilinia Energy efficient temporal load aware resource allocation in cloud computing datacenters , 2017, Journal of Cloud Computing.

[26]  Kenneth Holmberg,et al.  Influence of tribology on global energy consumption, costs and emissions , 2017, Friction.

[27]  Somnath Mazumdar,et al.  Power efficient server consolidation for Cloud data center , 2017, Future Gener. Comput. Syst..

[28]  Qiang Gao,et al.  Performance modeling of big data applications in the cloud centers , 2017, The Journal of Supercomputing.

[29]  Chan-Hyun Youn,et al.  Energy and QoS aware resource allocation for heterogeneous sustainable cloud datacenters , 2017, Opt. Switch. Netw..

[30]  Maode Ma,et al.  Multi-Population Ant Colony Algorithm for Virtual Machine Deployment , 2017, IEEE Access.

[31]  Hind Castel-Taleb,et al.  Performance Evaluation of Cloud Computing Centers with General Arrivals and Service , 2016, IEEE Transactions on Parallel and Distributed Systems.

[32]  Heng Lu,et al.  Optimization of virtual resource management for cloud applications to cope with traffic burst , 2016, Future Gener. Comput. Syst..

[33]  Zeyu Chen,et al.  Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions , 2016 .

[34]  Massoud Pedram,et al.  Achieving Energy Efficiency in Datacenters by Virtual Machine Sizing, Replication, and Placement , 2016, Adv. Comput..

[35]  Dongyu Qiu,et al.  Modeling of the resource allocation in cloud computing centers , 2015, Comput. Networks.

[36]  Jemal H. Abawajy,et al.  Service level agreement management framework for utility-oriented computing platforms , 2015, The Journal of Supercomputing.

[37]  Chia-Ming Wu,et al.  A green energy-efficient scheduling algorithm using the DVFS technique for cloud datacenters , 2014, Future Gener. Comput. Syst..

[38]  Liang Liu,et al.  A multi-objective ant colony system algorithm for virtual machine placement in cloud computing , 2013, J. Comput. Syst. Sci..

[39]  Rajkumar Buyya,et al.  Managing Overloaded Hosts for Dynamic Consolidation of Virtual Machines in Cloud Data Centers under Quality of Service Constraints , 2013, IEEE Transactions on Parallel and Distributed Systems.

[40]  Lei Jiang,et al.  Bio-inspired design of multiscale structures for function integration , 2011 .

[41]  Fen Wu,et al.  Gain-scheduling control of LFT systems using parameter-dependent Lyapunov functions , 2005, Proceedings of the 2005, American Control Conference, 2005..

[42]  Martin Arlitt,et al.  A workload characterization study of the 1998 World Cup Web site , 2000, IEEE Netw..

[43]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.