Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness

Hedonic pricing with quasi-linear preferences is shown to be equivalent to stable matching with transferable utilities and a participation constraint, and to an optimal transportation (Monge–Kantorovich) linear programming problem. Optimal assignments in the latter correspond to stable matchings, and to hedonic equilibria. These assignments are shown to exist in great generality; their marginal indirect payoffs with respect to agent type are shown to be unique whenever direct payoffs vary smoothly with type. Under a generalized Spence-Mirrlees condition (also known as a twist condition) the assignments are shown to be unique and to be pure, meaning the matching is one-to-one outside a negligible set. For smooth problems set on compact, connected type spaces such as the circle, there is a topological obstruction to purity, but we give a weaker condition still guaranteeing uniqueness of the stable match.

[1]  Garrett Birkhoff,et al.  Lattice Theory Revised Edition , 1948 .

[2]  John von Neumann,et al.  1. A Certain Zero-sum Two-person Game Equivalent to the Optimal Assignment Problem , 1953 .

[3]  R. G. Douglas,et al.  On extremal measures and subspace density. , 1964 .

[4]  Joram Lindenstrauss,et al.  A Remark on Extreme Doubly Stochastic Measures , 1965 .

[5]  E. Anderson Linear Programming In Infinite Dimensional Spaces , 1970 .

[6]  L. Shapley,et al.  The assignment game I: The core , 1971 .

[7]  W. Hildenbrand Core and Equilibria of a Large Economy. , 1974 .

[8]  Harry G. Johnson,et al.  The theory of income distribution , 1974 .

[9]  H. Kellerer Duality theorems for marginal problems , 1984 .

[10]  M. V. Meerhaeghe,et al.  The Theory of Income Distribution , 1986 .

[11]  The Support of Extremal Probability Measures with Given Marginals , 1987 .

[12]  R. M. Dudley,et al.  Real Analysis and Probability , 1989 .

[13]  G. Nürnberger Approximation by Spline Functions , 1989 .

[14]  L. L. Veselý,et al.  Delta-convex mappings between Banach spaces and applications , 1989 .

[15]  K. Valentine,,et al.  Contributions to the theory of care , 1989 .

[16]  Alvin E. Roth,et al.  Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis , 1990 .

[17]  A. Roth,et al.  Two-sided matching , 1990 .

[18]  William R. Zame,et al.  The nonatomic assignment model , 1992 .

[19]  M. Knott,et al.  On Hoeffding-Fre´chet bounds and cyclic monotone relations , 1992 .

[20]  Y. Brenier The dual Least Action Problem for an ideal, incompressible fluid , 1993 .

[21]  Stanley C. Williams,et al.  Supports of doubly stochastic measures , 1995 .

[22]  R. McCann Existence and uniqueness of monotone measure-preserving maps , 1995 .

[23]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[24]  OPTIMAL COUPLINGS BETWEEN ONEDIMENSIONAL DISTRIBUTIONS , 1997 .

[25]  Josef Štěpán,et al.  Distributions with given marginals and moment problems , 1997 .

[26]  W. Gangbo,et al.  Optimal maps for the multidimensional Monge-Kantorovich problem , 1998 .

[27]  S. Rachev,et al.  Mass transportation problems , 1998 .

[28]  R. McCann Exact solutions to the transportation problem on the line , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  Joseph M. Ostroy,et al.  Perfect Competition in the Continuous Assignment Model , 1999 .

[30]  W. Gangbo,et al.  Shape recognition via Wasserstein distance , 2000 .

[31]  Jo Graham,et al.  Old and new , 2000 .

[32]  Guillaume Carlier,et al.  Duality and existence for a class of mass transportation problems and economic applications , 2003 .

[33]  C. Villani Topics in Optimal Transportation , 2003 .

[34]  I. Ekeland An optimal matching problem , 2003, math/0308206.

[35]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[36]  R. McCann,et al.  The geometry of shape recognition via the monge-kantorovich optimal transport problem , 2004 .

[37]  Точные решения одномерной задачи Монжа - Канторовича@@@Precise solutions of the one-dimensional Monge - Kantorovich problem , 2004 .

[38]  Precise solutions of the one-dimensional Monge-Kantorovich problem , 2004 .

[39]  James J. Heckman,et al.  Nonparametric estimation of nonadditive hedonic models , 2005 .

[40]  N. Trudinger,et al.  Regularity of Potential Functions of the Optimal Transportation Problem , 2005 .

[41]  L. Kantorovich On the Translocation of Masses , 2006 .

[42]  R. McCann,et al.  Continuity, curvature, and the general covariance of optimal transportation , 2007, 0712.3077.

[43]  C. Villani Optimal Transport: Old and New , 2008 .