Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness
暂无分享,去创建一个
[1] Garrett Birkhoff,et al. Lattice Theory Revised Edition , 1948 .
[2] John von Neumann,et al. 1. A Certain Zero-sum Two-person Game Equivalent to the Optimal Assignment Problem , 1953 .
[3] R. G. Douglas,et al. On extremal measures and subspace density. , 1964 .
[4] Joram Lindenstrauss,et al. A Remark on Extreme Doubly Stochastic Measures , 1965 .
[5] E. Anderson. Linear Programming In Infinite Dimensional Spaces , 1970 .
[6] L. Shapley,et al. The assignment game I: The core , 1971 .
[7] W. Hildenbrand. Core and Equilibria of a Large Economy. , 1974 .
[8] Harry G. Johnson,et al. The theory of income distribution , 1974 .
[9] H. Kellerer. Duality theorems for marginal problems , 1984 .
[10] M. V. Meerhaeghe,et al. The Theory of Income Distribution , 1986 .
[11] The Support of Extremal Probability Measures with Given Marginals , 1987 .
[12] R. M. Dudley,et al. Real Analysis and Probability , 1989 .
[13] G. Nürnberger. Approximation by Spline Functions , 1989 .
[14] L. L. Veselý,et al. Delta-convex mappings between Banach spaces and applications , 1989 .
[15] K. Valentine,,et al. Contributions to the theory of care , 1989 .
[16] Alvin E. Roth,et al. Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis , 1990 .
[17] A. Roth,et al. Two-sided matching , 1990 .
[18] William R. Zame,et al. The nonatomic assignment model , 1992 .
[19] M. Knott,et al. On Hoeffding-Fre´chet bounds and cyclic monotone relations , 1992 .
[20] Y. Brenier. The dual Least Action Problem for an ideal, incompressible fluid , 1993 .
[21] Stanley C. Williams,et al. Supports of doubly stochastic measures , 1995 .
[22] R. McCann. Existence and uniqueness of monotone measure-preserving maps , 1995 .
[23] W. Gangbo,et al. The geometry of optimal transportation , 1996 .
[24] OPTIMAL COUPLINGS BETWEEN ONEDIMENSIONAL DISTRIBUTIONS , 1997 .
[25] Josef Štěpán,et al. Distributions with given marginals and moment problems , 1997 .
[26] W. Gangbo,et al. Optimal maps for the multidimensional Monge-Kantorovich problem , 1998 .
[27] S. Rachev,et al. Mass transportation problems , 1998 .
[28] R. McCann. Exact solutions to the transportation problem on the line , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[29] Joseph M. Ostroy,et al. Perfect Competition in the Continuous Assignment Model , 1999 .
[30] W. Gangbo,et al. Shape recognition via Wasserstein distance , 2000 .
[31] Jo Graham,et al. Old and new , 2000 .
[32] Guillaume Carlier,et al. Duality and existence for a class of mass transportation problems and economic applications , 2003 .
[33] C. Villani. Topics in Optimal Transportation , 2003 .
[34] I. Ekeland. An optimal matching problem , 2003, math/0308206.
[35] G. Burton. TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .
[36] R. McCann,et al. The geometry of shape recognition via the monge-kantorovich optimal transport problem , 2004 .
[37] Точные решения одномерной задачи Монжа - Канторовича@@@Precise solutions of the one-dimensional Monge - Kantorovich problem , 2004 .
[38] Precise solutions of the one-dimensional Monge-Kantorovich problem , 2004 .
[39] James J. Heckman,et al. Nonparametric estimation of nonadditive hedonic models , 2005 .
[40] N. Trudinger,et al. Regularity of Potential Functions of the Optimal Transportation Problem , 2005 .
[41] L. Kantorovich. On the Translocation of Masses , 2006 .
[42] R. McCann,et al. Continuity, curvature, and the general covariance of optimal transportation , 2007, 0712.3077.
[43] C. Villani. Optimal Transport: Old and New , 2008 .