A Combinatorial Approach for the Solution Deposition of Thin Films

[1]  I. Takeuchi,et al.  Hypothesis Learning in Automated Experiment: Application to Combinatorial Materials Libraries , 2021, Advanced materials.

[2]  M. Winter,et al.  High‐Throughput Experimentation and Computational Freeway Lanes for Accelerated Battery Electrolyte and Interface Development Research , 2021, Advanced Energy Materials.

[3]  Ofir Friedman,et al.  Combinatorial Liquid Flow Deposition of PbS Semiconductor Thin Films , 2021, Industrial & Engineering Chemistry Research.

[4]  Geoff L. Brennecka,et al.  Review of high-throughput approaches to search for piezoelectric nitrides , 2019 .

[5]  P. McGinn Thin-Film Processing Routes for Combinatorial Materials Investigations-A Review. , 2019, ACS combinatorial science.

[6]  I. Visoly-Fisher,et al.  Oriented Attachment: A Path to Columnar Morphology in Chemical Bath Deposited PbSe Thin Films , 2018 .

[7]  S. Mallick,et al.  Combinatorial Chemical Bath Deposition of CdS Contacts for Chalcogenide Photovoltaics. , 2016, ACS combinatorial science.

[8]  Andriy Zakutayev,et al.  Combinatorial Reactive Sputtering of In2S3 as an Alternative Contact Layer for Thin Film Solar Cells. , 2016, ACS applied materials & interfaces.

[9]  J. Grossman,et al.  Tunable and Energetically Robust PbS Nanoplatelets for Optoelectronic Applications , 2016 .

[10]  S. Mao,et al.  Combinatorial screening of thin film materials: An overview , 2015 .

[11]  D. Yoon,et al.  Liquid flow deposited spinel (Ni,Mn) 3 O 4 thin films for microbolometer applications , 2015 .

[12]  Dong Hun Kim,et al.  Deposition of epitaxial BiFeO3/CoFe2O4 nanocomposites on (001) SrTiO3 by combinatorial pulsed laser deposition , 2012 .

[13]  Y. Golan,et al.  Chemical epitaxy of semiconductor thin films , 2010 .

[14]  J. B. Baxter,et al.  Microreactor for High-Yield Chemical Bath Deposition of Semiconductor Nanowires: ZnO Nanowire Case Study , 2009 .

[15]  Y. Golan,et al.  Chemical solution deposited PbS thin films on Si(100) , 2008 .

[16]  Wei Chen,et al.  A combinatorial study of the corrosion and mechanical properties of Zn–Al material library fabricated by ion beam sputtering , 2008 .

[17]  Krishna Rajan,et al.  Combinatorial Materials Sciences: Experimental Strategies for Accelerated Knowledge Discovery , 2008 .

[18]  Frederik C. Krebs,et al.  Microstructured extremely thin absorber solar cells , 2007 .

[19]  Y. Golan,et al.  The role of solution composition in chemical bath deposition of epitaxial thin films of PbS on GaAs(1 0 0) , 2007 .

[20]  W. Maier,et al.  Combinatorial and high-throughput materials science. , 2007, Angewandte Chemie.

[21]  G. Hodes Chemical Solution Deposition Of Semiconductor Films , 2002 .

[22]  Eric J. Amis,et al.  Combinatorial Materials Science: What’s New Since Edison? , 2002 .

[23]  John A. Thornton,et al.  Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings , 1974 .

[24]  P. Migliorato,et al.  Near-IR detection by PbSGaAs heterojunctions , 1973 .

[25]  Xiaokun Zhang,et al.  High-throughput combinatorial chemical bath deposition: The case of doping Cu (In, Ga) Se film with antimony , 2018 .

[26]  Y. Golan,et al.  Microstructure and morphology evolution in chemically deposited semiconductor films: 4. From isolated nanoparticles to monocrystalline PbS thin films on GaAs(100) substrates , 2007 .

[27]  W. Knoll,et al.  Chemical deposition of PbS on a series of ω-functionalised self-assembled monolayers , 1999 .