A Comparison of UAV and Satellites Multispectral Imagery in Monitoring Onion Crop. An Application in the 'Cipolla Rossa di Tropea' (Italy)

[1]  Matthew F. McCabe,et al.  High-Resolution NDVI from Planet's Constellation of Earth Observing Nano-Satellites: A New Data Source for Precision Agriculture , 2016, Remote. Sens..

[2]  L. Deng,et al.  UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[3]  A. Ghulam,et al.  Unmanned Aerial System (UAS)-Based Phenotyping of Soybean using Multi-sensor Data Fusion and Extreme Learning Machine , 2017 .

[4]  F. Mallor,et al.  Genetic variation for bulb size, soluble solids content and pungency in the Spanish sweet onion variety Fuentes de Ebro. Response to selection for low pungency , 2011 .

[5]  Matthew F. McCabe,et al.  High-resolution sensing for precision agriculture: from Earth-observing satellites to unmanned aerial vehicles , 2016, Remote Sensing.

[6]  P. Teillet Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions , 1997 .

[7]  Flavio Esposito,et al.  UAV-Based High Resolution Thermal Imaging for Vegetation Monitoring, and Plant Phenotyping Using ICI 8640 P, FLIR Vue Pro R 640, and thermoMap Cameras , 2019, Remote. Sens..

[8]  Geoffrey J. Hay,et al.  Geographic object-based image analysis (GEOBIA): emerging trends and future opportunities , 2018 .

[9]  David P. Roy,et al.  Sharpening the Sentinel-2 10 and 20 m Bands to Planetscope-0 3 m Resolution , 2020, Remote. Sens..

[10]  Uwe Rascher,et al.  Multi-Scale Evaluation of Drone-Based Multispectral Surface Reflectance and Vegetation Indices in Operational Conditions , 2020, Remote. Sens..

[11]  Marco Vizzari,et al.  Sentinel 2-Based Nitrogen VRT Fertilization in Wheat: Comparison between Traditional and Simple Precision Practices , 2019, Agronomy.

[12]  Massimo De Marchi,et al.  Sentinel-2 Data Analysis and Comparison with UAV Multispectral Images for Precision Viticulture , 2018 .

[13]  Piero Toscano,et al.  Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture , 2015, Remote. Sens..

[14]  G. Micali,et al.  Onion yellow dwarf virus ∆∆Ct-based relative quantification obtained by using real-time polymerase chain reaction in ‘Rossa di Tropea’ onion , 2018, European Journal of Plant Pathology.

[15]  Laurence Hubert-Moy,et al.  Evaluation of Sentinel-2 time-series for mapping floodplain grassland plant communities , 2019, Remote Sensing of Environment.

[16]  Giuseppe Modica,et al.  Monitoring the vegetation vigor in heterogeneous citrus and olive orchards. A multiscale object-based approach to extract trees' crowns from UAV multispectral imagery , 2020, Comput. Electron. Agric..

[17]  A. Huete,et al.  A comparison of vegetation indices over a global set of TM images for EOS-MODIS , 1997 .

[18]  Jorge Torres-Sánchez,et al.  3-D Characterization of Vineyards Using a Novel UAV Imagery-Based OBIA Procedure for Precision Viticulture Applications , 2018, Remote. Sens..

[19]  Giuseppe Zimbalatti,et al.  Mechanical grading in PGI Tropea red onion post harvest operations , 2013 .

[20]  Peijun Du,et al.  A review of supervised object-based land-cover image classification , 2017 .

[21]  Yun Shi,et al.  Finer Classification of Crops by Fusing UAV Images and Sentinel-2A Data , 2019, Remote. Sens..

[22]  N. Silleos,et al.  Vegetation Indices: Advances Made in Biomass Estimation and Vegetation Monitoring in the Last 30 Years , 2006 .

[23]  J. F. Ortega,et al.  Onion biomass monitoring using UAV-based RGB imaging , 2018, Precision Agriculture.

[24]  Giuseppe Modica,et al.  A methodology based on GEOBIA and WorldView-3 imagery to derive vegetation indices at tree crown detail in olive orchards , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[25]  Marcello Chiaberge,et al.  Comparison of Satellite and UAV-Based Multispectral Imagery for Vineyard Variability Assessment , 2019, Remote. Sens..

[26]  R. Jackson,et al.  Spectral response of a plant canopy with different soil backgrounds , 1985 .

[27]  Kathryn Sheffield,et al.  Comparing inter-sensor NDVI for the analysis of horticulture crops in south-eastern Australia , 2014 .

[28]  Arko Lucieer,et al.  Poppy crop capsule volume estimation using UAS remote sensing and random forest regression , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[29]  Joaquim J. Sousa,et al.  Vineyard Variability Analysis through UAV-Based Vigour Maps to Assess Climate Change Impacts , 2019, Agronomy.

[30]  Jorge Torres-Sánchez,et al.  An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops , 2015, Comput. Electron. Agric..

[31]  Asli Ozdarici-Ok,et al.  Automatic detection and delineation of citrus trees from VHR satellite imagery , 2015 .

[32]  J. F. Ortega,et al.  Estimation of leaf area index in onion (Allium cepa L.) using an unmanned aerial vehicle , 2013 .

[33]  J. Townshend,et al.  Empirical comparison of Landsat 7 and IKONOS multispectral measurements for selected Earth Observation System (EOS) validation sites , 2003 .

[34]  Thomas Blaschke,et al.  Object based image analysis for remote sensing , 2010 .

[35]  Thomas Blaschke,et al.  Geographic Object-Based Image Analysis – Towards a new paradigm , 2014, ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing.

[36]  F. Tei,et al.  RELIABILITY OF NDVI DERIVED BY HIGH RESOLUTION SATELLITE AND UAV COMPARED TO IN-FIELD METHODS FOR THE EVALUATION OF EARLY CROP N STATUS AND GRAIN YIELD IN WHEAT , 2017, Experimental Agriculture.

[37]  Hoonyol Lee,et al.  Identification of Alpine Glaciers in the Central Himalayas Using Fully Polarimetric L-Band SAR Data , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Aly M. El-naggar Determination of optimum segmentation parameter values for extracting building from remote sensing images , 2018 .

[39]  Sajid Ghuffar,et al.  DEM Generation from Multi Satellite PlanetScope Imagery , 2018, Remote. Sens..

[40]  G. Modica,et al.  Sentinel-2 Imagery for Mapping Cork Oak ( Quercus suber L.) Distribution in Calabria (Italy): Capabilities and Quantitative Estimation , 2018 .

[41]  Asli Ozdarici-Ok,et al.  2-D delineation of individual citrus trees from UAV-based dense photogrammetric surface models , 2018, Int. J. Digit. Earth.

[42]  N. Zhang,et al.  Precision agriculture—a worldwide overview , 2002 .

[43]  Robin Gebbers,et al.  Precision Agriculture and Food Security , 2010, Science.

[44]  Keith T. Weber,et al.  Intercalibration and Evaluation of ResourceSat-1 and Landsat-5 NDVI , 2011 .

[45]  Josephine Bukowiecki,et al.  High-Throughput Prediction of Whole Season Green Area Index in Winter Wheat With an Airborne Multispectral Sensor , 2020, Frontiers in Plant Science.

[46]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[47]  John P. Fulton,et al.  An overview of current and potential applications of thermal remote sensing in precision agriculture , 2017, Comput. Electron. Agric..

[48]  S. Sader,et al.  Detection of forest harvest type using multiple dates of Landsat TM imagery , 2002 .

[49]  Jorge Torres-Sánchez,et al.  An Automatic Random Forest-OBIA Algorithm for Early Weed Mapping between and within Crop Rows Using UAV Imagery , 2018, Remote. Sens..

[50]  J. Mascaro,et al.  Coseismic displacements of the 14 November 2016 M w 7.8 Kaikoura, New Zealand, earthquake using the Planet optical cubesat constellation , 2017 .

[51]  M. Vallbé,et al.  Detection of irrigation inhomogeneities in an olive grove using the NDRE vegetation index obtained from UAV images , 2019, European Journal of Remote Sensing.

[52]  Maggi Kelly,et al.  Identification of Citrus Trees from Unmanned Aerial Vehicle Imagery Using Convolutional Neural Networks , 2018, Drones.

[53]  M. S. Moran,et al.  Opportunities and limitations for image-based remote sensing in precision crop management , 1997 .

[54]  S. Garrigues,et al.  Multiscale geostatistical analysis of AVHRR, SPOT-VGT, and MODIS global NDVI products , 2008 .

[55]  Emmanouil Psomiadis,et al.  The role of spatial and spectral resolution on the effectiveness of satellite-based vegetation indices , 2016, Remote Sensing.

[56]  K. Soudani,et al.  Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands , 2006 .

[57]  Jorge Torres-Sánchez,et al.  Object-based early monitoring of a grass weed in a grass crop using high resolution UAV imagery , 2016, Agronomy for Sustainable Development.

[58]  D. Mulla Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps , 2013 .

[59]  Chunhua Zhang,et al.  The application of small unmanned aerial systems for precision agriculture: a review , 2012, Precision Agriculture.

[60]  Hirokazu Yamamoto,et al.  Inter-Comparison of ASTER and MODIS Surface Reflectance and Vegetation Index Products for Synergistic Applications to Natural Resource Monitoring , 2008, Sensors.

[61]  Na Zhao,et al.  Mapping of Urban Surface Water Bodies from Sentinel-2 MSI Imagery at 10 m Resolution via NDWI-Based Image Sharpening , 2017, Remote. Sens..

[62]  Mariana Belgiu,et al.  Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis , 2018 .

[63]  Caixian Tang,et al.  The influence of alkalinity and water stress on the stomatal conductance, photosynthetic rate and growth of Lupinus angustifolius L. and Lupinus pilosus Murr. , 1999 .

[64]  W. Maes,et al.  Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture. , 2019, Trends in plant science.

[65]  Dirk Pflugmacher,et al.  Remote Sensing How Normalized Difference Vegetation Index (ndvi) Trends from Advanced Very High Resolution Radiometer (avhrr) and Système Probatoire D'observation De La Terre Vegetation (spot Vgt) Time Series Differ in Agricultural Areas: an Inner Mongolian Case Study , 2012 .

[66]  K. Ermokhina,et al.  Feasibility of tundra vegetation height retrieval from Sentinel-1 and Sentinel-2 data , 2020 .

[67]  I. Colomina,et al.  Unmanned aerial systems for photogrammetry and remote sensing: A review , 2014 .

[68]  Yanbo Huang,et al.  Monitoring plant diseases and pests through remote sensing technology: A review , 2019, Comput. Electron. Agric..

[69]  S. H. Aboukhadrah,et al.  Response of Onion Yield and Quality To Different Planting Date, Methods and Density , 2017 .

[70]  Craig S. T. Daughtry,et al.  Differences in vegetation indices for simulated Landsat-5 MSS and TM, NOAA-9 AVHRR, and SPOT-1 sensor systems , 1987 .

[71]  O. Csillik,et al.  Automated parameterisation for multi-scale image segmentation on multiple layers , 2014, ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing.

[72]  Giuseppe Modica,et al.  Applications of UAV Thermal Imagery in Precision Agriculture: State of the Art and Future Research Outlook , 2020, Remote. Sens..

[73]  F. López-Granados,et al.  Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images , 2013, PloS one.

[74]  Dirk Tiede,et al.  ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data , 2010, Int. J. Geogr. Inf. Sci..