Fractal Signal Analysis Using Mathematical Morphology

Publisher Summary This chapter provides the definitions of basic morphological transformations for sets and signals—i.e., the erosion, dilation, and opening operations—and surveys the theory of fractal dimensions. There is a proliferation of fractal dimensions, all of which are more or less capable of measuring the degree of fragmentation of a signal's graph; their definitions and interrelationships are also discussed in the chapter. Emphasis is given on the Minkowski–Bouligand dimension, whose analysis is done using morphological operations. The chapter also reviews three classes of parametric fractal signals and related algorithms for their synthesis. The performance of the presented morphological method for measuring fractal dimension is tested by applying it to the above synthetic fractal signals. In the chapter, various covering methods—a class of general and efficient approaches to compute the fractal dimension of arbitrary fractal signals—are discussed. The morphological covering approach to find the fractal dimension of 2D signals are described in the chapter followed by the fractal binary image modeling using collages.

[1]  T. Peli,et al.  Multi-Scale Fractal and Correlation Signatures for Image Screening and Natural Clutter Suppression , 1989, Other Conferences.

[2]  Arnaud E. Jacquin,et al.  Image coding based on a fractal theory of iterated contractive image transformations , 1992, IEEE Trans. Image Process..

[3]  H. Minkowski Volumen und Oberfläche , 1903 .

[4]  J. R. Wallis,et al.  Computer Experiments With Fractional Gaussian Noises: Part 1, Averages and Variances , 1969 .

[5]  Christian Lantuejoul,et al.  Skeletonization in Quantitative Metallography , 1980 .

[6]  M. Barnsley,et al.  Iterated function systems and the global construction of fractals , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  J. Serra,et al.  An overview of morphological filtering , 1992 .

[8]  Michael C. Stein Fractal Image Models And Object Detection , 1987, Other Conferences.

[9]  H. D. Ursell,et al.  Sets of Fractional Dimensions (V) : On Dimensional Numbers of Some continuous Curves , 1937 .

[10]  Xinhua Zhuang,et al.  Image Analysis Using Mathematical Morphology , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Douglas P. Hardin,et al.  The capacity for a class of fractal functions , 1986 .

[12]  B. Mandelbrot Self-Affine Fractals and Fractal Dimension , 1985 .

[13]  C. Roques-Carmes,et al.  Evaluation de la dimension fractale d'un graphe , 1988 .

[14]  G. Hardy Weierstrass’s non-differentiable function , 1916 .

[15]  Henk J. A. M. Heijmans,et al.  The algebraic basis of mathematical morphology : II. Openings and closings , 1991, CVGIP Image Underst..

[16]  R. S. McGowan,et al.  An aeroacoustic approach to phonation. , 1988, The Journal of the Acoustical Society of America.

[17]  A. Besicovitch On the sum of digits of real numbers represented in the dyadic system. , 1935 .

[18]  R. Schafer,et al.  Morphological systems for multidimensional signal processing , 1990, Proc. IEEE.

[19]  S. Zucker,et al.  Evaluating the fractal dimension of profiles. , 1989, Physical review. A, General physics.

[20]  S. Kay,et al.  Fractional Brownian Motion: A Maximum Likelihood Estimator and Its Application to Image Texture , 1986, IEEE Transactions on Medical Imaging.

[21]  Petros Maragos,et al.  Measuring the Fractal Dimension of Signals: Morphological Covers and Iterative Optimization , 1993, IEEE Trans. Signal Process..

[22]  J. Yorke,et al.  Dimension of chaotic attractors , 1982 .

[23]  Joseph Naor,et al.  Multiple Resolution Texture Analysis and Classification , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Alex Pentland,et al.  Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Alan C. Bovik,et al.  Localized measurement of image fractal dimension using gabor filters , 1991, J. Vis. Commun. Image Represent..

[26]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[27]  Clifford A. Pickover,et al.  Fractal characterization of speech waveform graphs , 1986, Comput. Graph..

[28]  Henk J. A. M. Heijmans,et al.  The algebraic basis of mathematical morphology. I Dilations and erosions , 1990, Comput. Vis. Graph. Image Process..

[29]  S. Zucker,et al.  Evaluating the fractal dimension of surfaces , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[30]  Richard F. Voss,et al.  Fractals in nature: from characterization to simulation , 1988 .

[31]  Petros Maragos,et al.  Morphological skeleton representation and coding of binary images , 1984, IEEE Trans. Acoust. Speech Signal Process..

[32]  H. Minkowski Volumen und Oberfläche , 1903 .

[33]  Monson H. Hayes,et al.  Hidden-variable fractal interpolation of discrete sequences , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[34]  Ahmed H. Tewfik,et al.  Maximum likelihood estimation of the fractal dimensions of stochastic fractals and Cramer-Rao bounds , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[35]  Stanley R Sternberg,et al.  Grayscale morphology , 1986 .

[36]  F. Hausdorff Dimension und äußeres Maß , 1918 .

[37]  Michael F. Barnsley,et al.  Fractal functions and interpolation , 1986 .

[38]  A. Besicovitch Sets of Fractional Dimensions (IV): On Rational Approximation to Real Numbers , 1934 .

[39]  M. Berry,et al.  On the Weierstrass-Mandelbrot fractal function , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[40]  M. Barnsley,et al.  Solution of an inverse problem for fractals and other sets. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[42]  Petros Maragos,et al.  Application Of Iterated Function Systems And Skeletonization To Synthesis Of Fractal Images , 1987, Other Conferences.

[43]  Petros Maragos,et al.  Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[44]  Petros Maragos,et al.  Fractal aspects of speech signals: dimension and interpolation , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[45]  T. J. Thomas A finite element model of fluid flow in the vocal tract , 1986 .

[46]  Curtis T. McMullen,et al.  The Hausdorff dimension of general Sierpiński carpets , 1984, Nagoya Mathematical Journal.

[47]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..