Fractal Signal Analysis Using Mathematical Morphology
暂无分享,去创建一个
[1] T. Peli,et al. Multi-Scale Fractal and Correlation Signatures for Image Screening and Natural Clutter Suppression , 1989, Other Conferences.
[2] Arnaud E. Jacquin,et al. Image coding based on a fractal theory of iterated contractive image transformations , 1992, IEEE Trans. Image Process..
[3] H. Minkowski. Volumen und Oberfläche , 1903 .
[4] J. R. Wallis,et al. Computer Experiments With Fractional Gaussian Noises: Part 1, Averages and Variances , 1969 .
[5] Christian Lantuejoul,et al. Skeletonization in Quantitative Metallography , 1980 .
[6] M. Barnsley,et al. Iterated function systems and the global construction of fractals , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[7] J. Serra,et al. An overview of morphological filtering , 1992 .
[8] Michael C. Stein. Fractal Image Models And Object Detection , 1987, Other Conferences.
[9] H. D. Ursell,et al. Sets of Fractional Dimensions (V) : On Dimensional Numbers of Some continuous Curves , 1937 .
[10] Xinhua Zhuang,et al. Image Analysis Using Mathematical Morphology , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[11] Douglas P. Hardin,et al. The capacity for a class of fractal functions , 1986 .
[12] B. Mandelbrot. Self-Affine Fractals and Fractal Dimension , 1985 .
[13] C. Roques-Carmes,et al. Evaluation de la dimension fractale d'un graphe , 1988 .
[14] G. Hardy. Weierstrass’s non-differentiable function , 1916 .
[15] Henk J. A. M. Heijmans,et al. The algebraic basis of mathematical morphology : II. Openings and closings , 1991, CVGIP Image Underst..
[16] R. S. McGowan,et al. An aeroacoustic approach to phonation. , 1988, The Journal of the Acoustical Society of America.
[17] A. Besicovitch. On the sum of digits of real numbers represented in the dyadic system. , 1935 .
[18] R. Schafer,et al. Morphological systems for multidimensional signal processing , 1990, Proc. IEEE.
[19] S. Zucker,et al. Evaluating the fractal dimension of profiles. , 1989, Physical review. A, General physics.
[20] S. Kay,et al. Fractional Brownian Motion: A Maximum Likelihood Estimator and Its Application to Image Texture , 1986, IEEE Transactions on Medical Imaging.
[21] Petros Maragos,et al. Measuring the Fractal Dimension of Signals: Morphological Covers and Iterative Optimization , 1993, IEEE Trans. Signal Process..
[22] J. Yorke,et al. Dimension of chaotic attractors , 1982 .
[23] Joseph Naor,et al. Multiple Resolution Texture Analysis and Classification , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[24] Alex Pentland,et al. Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[25] Alan C. Bovik,et al. Localized measurement of image fractal dimension using gabor filters , 1991, J. Vis. Commun. Image Represent..
[26] B. Mandelbrot,et al. Fractional Brownian Motions, Fractional Noises and Applications , 1968 .
[27] Clifford A. Pickover,et al. Fractal characterization of speech waveform graphs , 1986, Comput. Graph..
[28] Henk J. A. M. Heijmans,et al. The algebraic basis of mathematical morphology. I Dilations and erosions , 1990, Comput. Vis. Graph. Image Process..
[29] S. Zucker,et al. Evaluating the fractal dimension of surfaces , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[30] Richard F. Voss,et al. Fractals in nature: from characterization to simulation , 1988 .
[31] Petros Maragos,et al. Morphological skeleton representation and coding of binary images , 1984, IEEE Trans. Acoust. Speech Signal Process..
[32] H. Minkowski. Volumen und Oberfläche , 1903 .
[33] Monson H. Hayes,et al. Hidden-variable fractal interpolation of discrete sequences , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.
[34] Ahmed H. Tewfik,et al. Maximum likelihood estimation of the fractal dimensions of stochastic fractals and Cramer-Rao bounds , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.
[35] Stanley R Sternberg,et al. Grayscale morphology , 1986 .
[36] F. Hausdorff. Dimension und äußeres Maß , 1918 .
[37] Michael F. Barnsley,et al. Fractal functions and interpolation , 1986 .
[38] A. Besicovitch. Sets of Fractional Dimensions (IV): On Rational Approximation to Real Numbers , 1934 .
[39] M. Berry,et al. On the Weierstrass-Mandelbrot fractal function , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[40] M. Barnsley,et al. Solution of an inverse problem for fractals and other sets. , 1986, Proceedings of the National Academy of Sciences of the United States of America.
[41] Jean Serra,et al. Image Analysis and Mathematical Morphology , 1983 .
[42] Petros Maragos,et al. Application Of Iterated Function Systems And Skeletonization To Synthesis Of Fractal Images , 1987, Other Conferences.
[43] Petros Maragos,et al. Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters , 1987, IEEE Trans. Acoust. Speech Signal Process..
[44] Petros Maragos,et al. Fractal aspects of speech signals: dimension and interpolation , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.
[45] T. J. Thomas. A finite element model of fluid flow in the vocal tract , 1986 .
[46] Curtis T. McMullen,et al. The Hausdorff dimension of general Sierpiński carpets , 1984, Nagoya Mathematical Journal.
[47] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..