Efficient discontinuous finite difference meshes for 3-D Laplace–Fourier domain seismic wavefield modelling in acoustic media with embedded boundaries

Author(s): Alsalem, HJ; Petrov, P; Newman, G; Um, E; Rector, J | Abstract: © 2019 The Author(s). Published by Oxford University Press on behalf of The Royal Astronomical Society. Simulation of acoustic wave propagation in the Laplace?Fourier (LF) domain, with a spatially uniform mesh, can be computationally demanding especially in areas with large velocity contrasts. To improve efficiency and convergence, we use 3-D second- and fourth-order velocitypressure finite difference (FD) discontinuous meshes (DM). Our DM algorithm can use any spatial discretization ratio between meshes. We evaluate direct and iterative parallel solvers for computational speed, memory requirements and convergence. Benchmarks in realistic 3-D models and topographies show more efficient and stable results for DM with direct solvers than uniform mesh results with iterative solvers.

[1]  I. Štekl,et al.  Accurate viscoelastic modeling by frequency‐domain finite differences using rotated operators , 1998 .

[2]  M. Nafi Toksöz,et al.  Discontinuous-Grid Finite-Difference Seismic Modeling Including Surface Topography , 2001 .

[3]  Arben Pitarka,et al.  3D Elastic Finite-Difference Modeling of Seismic Motion Using Staggered Grids with Nonuniform Spacing , 1999 .

[4]  James Demmel,et al.  SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems , 2003, TOMS.

[5]  Peter Moczo,et al.  Finite-difference technique for SH-waves in 2-D media using irregular grids-application to the seismic response problem , 1989 .

[6]  James Demmel,et al.  Parallel Symbolic Factorization for Sparse LU with Static Pivoting , 2007, SIAM J. Sci. Comput..

[7]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[8]  Yibo Wang,et al.  Viscoelastic wave simulation in basins by a variable-grid finite-difference method , 2001 .

[9]  John B. Schneider,et al.  Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation , 1996 .

[10]  Jean-Yves L'Excellent,et al.  Improving Multifrontal Methods by Means of Block Low-Rank Representations , 2015, SIAM J. Sci. Comput..

[11]  S. Operto,et al.  3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study , 2007 .

[12]  Ekkehart Tessmer,et al.  Seismic finite-difference modeling with spatially varying time steps , 2000 .

[13]  Yang Zhang,et al.  Frequency-Domain Finite-Difference Acoustic Modeling With Free Surface Topography Using Embedded Boundary Method , 2010 .

[14]  Hiroyuki Fujiwara,et al.  3D finite-difference method using discontinuous grids , 1999, Bulletin of the Seismological Society of America.

[15]  David L. Marcum,et al.  Proceedings of the 16th International Meshing Roundtable , 2008 .

[16]  Martin Galis,et al.  Stable discontinuous staggered grid in the finite-difference modelling of seismic motion , 2010 .

[17]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[18]  K. Olsen,et al.  Fourth‐Order Staggered‐Grid Finite‐Difference Seismic Wavefield Estimation Using a Discontinuous Mesh Interface (WEDMI)Fourth‐Order Staggered‐Grid Finite‐Difference Seismic WEDMI , 2017 .

[19]  David R. O'Hallaron,et al.  Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers , 1998 .

[20]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[21]  Joseph E. Pasciak,et al.  Analysis of a Cartesian PML approximation to acoustic scattering problems in R2 , 2010 .

[22]  Jian-Ming Jin,et al.  The Finite Element Method in Electromagnetics , 1993 .

[23]  K. Marfurt Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .

[24]  Yuxiang Zhang,et al.  Parallel goal-oriented adaptive finite element modeling for 3D electromagnetic exploration , 2015 .

[25]  Gregory A. Newman,et al.  Embedded boundary methods for modeling 3D finite-difference Laplace-Fourier domain acoustic-wave equation with free-surface topography , 2018 .

[26]  R. Pratt,et al.  INVERSE THEORY APPLIED TO MULTI‐SOURCE CROSS‐HOLE TOMOGRAPHY.: PART 1: ACOUSTIC WAVE‐EQUATION METHOD1 , 1990 .

[27]  A. Fichtner Full Seismic Waveform Modelling and Inversion , 2011 .

[28]  Robert W. Graves,et al.  Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences , 1996, Bulletin of the Seismological Society of America.

[29]  Gregory A. Newman,et al.  3D finite-difference modeling of elastic wave propagation in the Laplace-Fourier domain , 2012 .

[30]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[31]  John Lysmer,et al.  A Finite Element Method for Seismology , 1972 .

[32]  S. Operto,et al.  Mixed‐grid and staggered‐grid finite‐difference methods for frequency‐domain acoustic wave modelling , 2004 .

[33]  Effect of a simple mountain range on underground seismic motion , 1984 .

[34]  C. Shin,et al.  An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator , 1996 .

[35]  Wei Zhang,et al.  Stable discontinuous grid implementation for collocated-grid finite-difference seismic wave modelling , 2013 .

[36]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .