Cross-species functional alignment reveals evolutionary hierarchy within the connectome

Evolution provides an important window into how cortical organization shapes function and vice versa. The complex mosaic of changes in brain morphology and functional organization that have shaped the mammalian cortex during evolution, complicates attempts to chart cortical differences across species. It limits our ability to fully appreciate how evolution has shaped our brain, especially in systems associated with unique human cognitive capabilities that lack anatomical homologues in other species. Here, we develop a function-based method for cross-species alignment that enables the quantification of homologous regions between humans and rhesus macaques, even when their location is decoupled from anatomical landmarks. Critically, we find cross-species similarity in functional organization reflects a gradient of evolutionary change that decreases from unimodal systems and culminates with the most pronounced changes in posterior regions of the default mode network (angular gyrus, posterior cingulate and middle temporal cortices). Our findings suggest that the establishment of the default mode network, as the apex of a cognitive hierarchy, has changed in a complex manner during human evolution – even within subnetworks.

[1]  Chad J. Donahue,et al.  Quantitative assessment of prefrontal cortex in humans relative to nonhuman primates , 2018, Proceedings of the National Academy of Sciences.

[2]  C. Soligo,et al.  Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution , 2013, Proceedings of the Royal Society B: Biological Sciences.

[3]  Satrajit S. Ghosh,et al.  Diffeomorphic functional brain surface alignment: Functional demons , 2017, NeuroImage.

[4]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[5]  Hao-Ting Wang,et al.  Modes of operation: A topographic neural gradient supporting stimulus dependent and independent cognition , 2019, NeuroImage.

[6]  Katrin Krumbholz,et al.  Parcellation of Human and Monkey Core Auditory Cortex with fMRI Pattern Classification and Objective Detection of Tonotopic Gradient Reversals , 2014, Cerebral cortex.

[7]  Karla L. Miller,et al.  The extreme capsule fiber complex in humans and macaque monkeys: a comparative diffusion MRI tractography study , 2015, Brain Structure and Function.

[8]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[9]  Stamatios N. Sotiropoulos,et al.  Towards HCP-Style macaque connectomes: 24-Channel 3T multi-array coil, MRI sequences and preprocessing , 2019, NeuroImage.

[10]  Timothy D. Griffiths,et al.  Orthogonal representation of sound dimensions in the primate midbrain , 2011, Nature Neuroscience.

[11]  R. Passingham,et al.  Whole brain comparative anatomy using connectivity blueprints , 2018, bioRxiv.

[12]  R. Buckner,et al.  Functional-Anatomic Fractionation of the Brain's Default Network , 2010, Neuron.

[13]  Andreas Nieder,et al.  Dual Neural Network Model for the Evolution of Speech and Language , 2016, Trends in Neurosciences.

[14]  Christopher L. Asplund,et al.  Functional Specialization and Flexibility in Human Association Cortex. , 2016, Cerebral cortex.

[15]  Ravi S. Menon,et al.  Frontoparietal Functional Connectivity in the Common Marmoset , 2016, Cerebral cortex.

[16]  Hao-Ting Wang,et al.  The role of the default mode network in component processes underlying the wandering mind , 2017, Social cognitive and affective neuroscience.

[17]  G. Deco,et al.  Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain , 2019, Science Advances.

[18]  Nikola T. Markov,et al.  A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex , 2012, Cerebral cortex.

[19]  Mert R. Sabuncu,et al.  Measuring and comparing brain cortical surface area and other areal quantities , 2012, NeuroImage.

[20]  Karla L. Miller,et al.  Primate comparative neuroscience using magnetic resonance imaging: promises and challenges , 2014, Front. Neurosci..

[21]  W. Vanduffel,et al.  Covert Shifts of Spatial Attention in the Macaque Monkey , 2015, The Journal of Neuroscience.

[22]  Tristan A. Chaplin,et al.  A Conserved Pattern of Differential Expansion of Cortical Areas in Simian Primates , 2013, The Journal of Neuroscience.

[23]  David K. Menon,et al.  Default mode contributions to automated information processing , 2017, Proceedings of the National Academy of Sciences.

[24]  Brian D. Mills,et al.  Large-scale topology and the default mode network in the mouse connectome , 2014, Proceedings of the National Academy of Sciences.

[25]  M. A. García-Cabezas,et al.  Evolution, development, and organization of the cortical connectome , 2019, PLoS biology.

[26]  J. Price,et al.  Prefrontal cortical projections to the striatum in macaque monkeys: Evidence for an organization related to prefrontal networks , 2000, The Journal of comparative neurology.

[27]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[28]  G. Paxinos,et al.  Paxinos and Franklin's the Mouse Brain in Stereotaxic Coordinates , 2012 .

[29]  Noam Chomsky,et al.  Evolution, brain, and the nature of language , 2013, Trends in Cognitive Sciences.

[30]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[31]  Markus H. Sneve,et al.  High-Expanding Regions in Primate Cortical Brain Evolution Support Supramodal Cognitive Flexibility. , 2018, Cerebral cortex.

[32]  Daniel S. Margulies,et al.  Interindividual Variability of Functional Connectivity in Awake and Anesthetized Rhesus Macaque Monkeys , 2019, Biological psychiatry. Cognitive neuroscience and neuroimaging.

[33]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[34]  R. Byrne The Thinking Ape : Evolutionary Origins of Intelligence , 1995 .

[35]  Dante Mantini,et al.  Emerging Roles of the Brain’s Default Network , 2013, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[36]  Michael W. Cole,et al.  Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks , 2017, Proceedings of the National Academy of Sciences.

[37]  Mark Jenkinson,et al.  Cross-species cortical alignment identifies different types of neuroanatomical reorganization in the temporal lobe of higher primates , 2019, bioRxiv.

[38]  A. Bernacchia,et al.  Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography , 2018, Nature Neuroscience.

[39]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[40]  Alan C. Evans,et al.  Microstructural and Functional Gradients are Increasingly Dissociated in Transmodal Cortices , 2018 .

[41]  Christopher L. Asplund,et al.  Functional Specialization and Flexibility in Human Association Cortex. , 2015, Cerebral cortex.

[42]  T. Toda,et al.  The Ventral Primary Somatosensory Cortex of the Primate Brain: Innate Neural Interface for Dexterous Orofacial Motor Control , 2015 .

[43]  Alexander Opitz,et al.  Delineating the macroscale areal organization of the macaque cortex in vivo , 2017, bioRxiv.

[44]  M. Mesulam,et al.  From sensation to cognition. , 1998, Brain : a journal of neurology.

[45]  G. Orban,et al.  Default Mode of Brain Function in Monkeys , 2011, The Journal of Neuroscience.

[46]  Lianne H. Scholtens,et al.  Evolutionary expansion of connectivity between multimodal association areas in the human brain compared with chimpanzees , 2019, Proceedings of the National Academy of Sciences.

[47]  Dante Mantini,et al.  Functional specialization of macaque premotor F5 subfields with respect to hand and mouth movements: A comparison of task and resting-state fMRI , 2019, NeuroImage.

[48]  Mark Jenkinson,et al.  MSM: A new flexible framework for Multimodal Surface Matching , 2014, NeuroImage.

[49]  Matthew F. Glasser,et al.  Development and Evolution of Cerebral and Cerebellar Cortex , 2018, Brain, Behavior and Evolution.

[50]  N. Šestan,et al.  Evolution of the Human Nervous System Function, Structure, and Development , 2017, Cell.

[51]  Alan C. Evans,et al.  Microstructural and functional gradients are increasingly dissociated in transmodal cortices , 2019, PLoS biology.

[52]  Anna S. Mitchell,et al.  A Neural Circuit Covarying with Social Hierarchy in Macaques , 2014, PLoS biology.

[53]  Roberto Toro,et al.  Role of mechanical morphogenesis in the development and evolution of the neocortex. , 2019, Physics of life reviews.

[54]  Daniel S. Margulies,et al.  Inter-individual Variability of Functional Connectivity in Awake and Anesthetized Rhesus Monkeys , 2019, bioRxiv.

[55]  Adam G. Thomas,et al.  Comparison of Human Ventral Frontal Cortex Areas for Cognitive Control and Language with Areas in Monkey Frontal Cortex , 2014, Neuron.

[56]  Charles R. E. Wilson,et al.  Sulcal organization in the medial frontal cortex reveals insights into primate brain evolution , 2019, bioRxiv.

[57]  E. Koechlin,et al.  Managing competing goals — a key role for the frontopolar cortex , 2017, Nature Reviews Neuroscience.

[58]  Koen V. Haak,et al.  Connectopic mapping with resting-state fMRI , 2016, NeuroImage.

[59]  Timothy Edward John Behrens,et al.  Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Parietal Cortex and Comparison with Human and Macaque Resting-State Functional Connectivity , 2011, The Journal of Neuroscience.

[60]  Saad Jbabdi,et al.  Connectivity Fingerprints: From Areal Descriptions to Abstract Spaces , 2018, Trends in Cognitive Sciences.

[61]  M. Corbetta,et al.  Functional evolution of new and expanded attention networks in humans , 2015, Proceedings of the National Academy of Sciences.

[62]  Elizabeth Jefferies,et al.  Situating the default-mode network along a principal gradient of macroscale cortical organization , 2016, Proceedings of the National Academy of Sciences.

[63]  D. V. Essen,et al.  Surface-Based and Probabilistic Atlases of Primate Cerebral Cortex , 2007, Neuron.

[64]  James K. Rilling,et al.  Comparative primate neuroimaging: insights into human brain evolution , 2014, Trends in Cognitive Sciences.

[65]  Haakon G. Engen,et al.  Escaping the here and now: Evidence for a role of the default mode network in perceptually decoupled thought , 2013, NeuroImage.

[66]  Adam G. Thomas,et al.  The Organization of Dorsal Frontal Cortex in Humans and Macaques , 2013, The Journal of Neuroscience.

[67]  Kazuhiko Seki,et al.  Distinct sensorimotor feedback loops for dynamic and static control of primate precision grip , 2020, Communications Biology.

[68]  Simon Baumann,et al.  This Work Is Licensed under a Creative Commons Attribution 4.0 International License Date Deposited: the Topography of Frequency and Time Representation in Primate Auditory Cortices , 2022 .

[69]  Maurizio Corbetta,et al.  The evolution of the temporoparietal junction and posterior superior temporal sulcus , 2019, Cortex.

[70]  W. Marslen-Wilson,et al.  Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans , 2015, Nature Communications.

[71]  M. Rosa Visual maps in the adult primate cerebral cortex: some implications for brain development and evolution. , 2002, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[72]  Peter T. Fox,et al.  Mosaic evolution of brain structure in mammals , 2022 .

[73]  Polina Golland,et al.  Functional Geometry Alignment and Localization of Brain Areas , 2010, NIPS.

[74]  Daniel S. Margulies,et al.  An Open Resource for Non-human Primate Imaging , 2018, Neuron.

[75]  S. Everling,et al.  Monkey in the middle: why non-human primates are needed to bridge the gap in resting-state investigations , 2012, Front. Neuroanat..

[76]  Timothy D. Griffiths,et al.  Individually customisable non-invasive head immobilisation system for non-human primates with an option for voluntary engagement , 2016, Journal of Neuroscience Methods.

[77]  Xi-Nian Zuo,et al.  A Connectome Computation System for discovery science of brain , 2015 .

[78]  John W. Harwell,et al.  Cortical parcellations of the macaque monkey analyzed on surface-based atlases. , 2012, Cerebral cortex.

[79]  R. N. Spreng,et al.  The default network and self‐generated thought: component processes, dynamic control, and clinical relevance , 2014, Annals of the New York Academy of Sciences.

[80]  Doris Y. Tsao,et al.  Comparing face patch systems in macaques and humans , 2008, Proceedings of the National Academy of Sciences.

[81]  M. Corbetta,et al.  Inter-species activity correlations reveal functional correspondences between monkey and human brain areas , 2012, Nature Methods.

[82]  John W. Harwell,et al.  Similar patterns of cortical expansion during human development and evolution , 2010, Proceedings of the National Academy of Sciences.

[83]  Chad J. Donahue,et al.  Using Diffusion Tractography to Predict Cortical Connection Strength and Distance: A Quantitative Comparison with Tracers in the Monkey , 2016, The Journal of Neuroscience.

[84]  William L. Jungers,et al.  The evolution of human and ape hand proportions , 2015, Nature Communications.

[85]  Galit Yovel,et al.  Face recognition systems in monkey and human: are they the same thing? , 2013, F1000prime reports.

[86]  G. Varoquaux,et al.  Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants , 2018, Proceedings of the National Academy of Sciences.

[87]  Ross S. Muers,et al.  Functional Imaging of Audio–Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences? , 2017, Cerebral cortex.

[88]  L. Petit,et al.  The comparative anatomy of frontal eye fields in primates , 2019, Cortex.

[89]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[90]  Randy L. Buckner,et al.  The evolution of distributed association networks in the human brain , 2013, Trends in Cognitive Sciences.

[91]  Leah Krubitzer,et al.  The Magnificent Compromise: Cortical Field Evolution in Mammals , 2007, Neuron.

[92]  Peter Stiers,et al.  Comparative Analysis of the Macroscale Structural Connectivity in the Macaque and Human Brain , 2014, PLoS Comput. Biol..

[93]  Julia M. Huntenburg,et al.  A Systematic Relationship Between Functional Connectivity and Intracortical Myelin in the Human Cerebral Cortex , 2017, Cerebral cortex.

[94]  Hao-Ting Wang,et al.  Distant from input: Evidence of regions within the default mode network supporting perceptually-decoupled and conceptually-guided cognition , 2018, NeuroImage.

[95]  P S Goldman-Rakic,et al.  Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca , 1991, The Journal of comparative neurology.

[96]  Jon H Kaas,et al.  The evolution of neocortex in primates. , 2012, Progress in brain research.

[97]  Simon B. Eickhoff,et al.  A cross-modal, cross-species comparison of connectivity measures in the primate brain , 2016, NeuroImage.

[98]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[99]  A. Rees,et al.  Auditory motion-specific mechanisms in the primate brain , 2017, PLoS biology.

[100]  P. Harvey,et al.  Mosaic evolution of brain structure in mammals , 2000, Nature.

[101]  Leah Krubitzer,et al.  In Search of a Unifying Theory of Complex Brain Evolution , 2009, Annals of the New York Academy of Sciences.

[102]  Pierre-Louis Bazin,et al.  Evolution of neocortical folding: A phylogenetic comparative analysis of MRI from 34 primate species , 2019, Cortex.

[103]  D. Margulies,et al.  Default mode network can support the level of detail in experience during active task states , 2018, Proceedings of the National Academy of Sciences.

[104]  Daniel S. Margulies,et al.  Macroscale cortical organization and a default-like apex transmodal network in the marmoset monkey , 2019, Nature Communications.

[105]  William D. Hopkins,et al.  Evolution of the Central Sulcus Morphology in Primates , 2014, Brain, Behavior and Evolution.

[106]  Mark Jenkinson,et al.  Cross-species cortical alignment identifies different types of neuroanatomical reorganization in higher primates , 2019 .

[107]  Rodrigo M. Braga,et al.  Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity , 2017, Neuron.

[108]  Evan M. Gordon,et al.  Functional System and Areal Organization of a Highly Sampled Individual Human Brain , 2015, Neuron.

[109]  M. Corbetta,et al.  Evolutionarily Novel Functional Networks in the Human Brain? , 2013, The Journal of Neuroscience.

[110]  William D. Hopkins,et al.  Modular structure facilitates mosaic evolution of the brain in chimpanzees and humans , 2014, Nature Communications.

[111]  Leonardo Cerliani,et al.  Structural Variability Across the Primate Brain: A Cross-Species Comparison , 2018, Cerebral cortex.