Energy analysis of metal–metal bonding in [RM–MR] (M = Zn, Cd, Hg; R = CH3, SiH3, GeH3, C5H5, C5Me5)

Abstract The metal–metal bonds of the title compounds have been investigated with the help of energy decomposition analysis at the DFT/TZ2P level. In good agreement with experiment, computations yield Hg–Hg bond distance in [H3SiHg–HgSiH3] of 2.706 A and Zn–Zn bond distance in [(η5-C5Me5)Zn–Zn(η5-C5Me5)] of 2.281 A. The Cd–Cd bond distances are longer than the Hg–Hg bond distances. Bond dissociation energies (-BDE) for Zn–Zn bonds in zincocene −70.6 kcal/mol in [(η5-C5H5)2Zn2] and −70.3 kcal/mol in [(η5-C5Me5)2Zn2] are greater amongst the compounds under study. In addition, [(η5-C5H5)2M2] is found to have a binding energy slightly larger than those in [(η5-C5Me5)2M2]. The trend of the M–M bond dissociation energy for the substituents R shows for metals the order GeH3

[1]  Célia Fonseca Guerra,et al.  The Nature of the Hydrogen Bond in DNA Base Pairs: The Role of Charge Transfer and Resonance Assistance , 1999 .

[2]  Arvi Rauk,et al.  A theoretical study of the ethylene-metal bond in complexes between copper(1+), silver(1+), gold(1+), platinum(0) or platinum(2+) and ethylene, based on the Hartree-Fock-Slater transition-state method , 1979 .

[3]  Ingvar Lindgren,et al.  Diagonalisation of the Dirac Hamiltonian as a basis for a relativistic many-body procedure , 1986 .

[4]  Y. Apeloig,et al.  The Synthesis and Molecular Structure of the First Two-Coordinate, Dinuclear σ-Bonded Mercury(I) RHgHgR Compound. , 1999, Angewandte Chemie.

[5]  Evert Jan Baerends,et al.  Roothaan-Hartree-Fock-Slater atomic wave functions , 1981 .

[6]  Wei-Hai Fang,et al.  A combined DFT and CCSD(T) study on electronic structures and stability of the M2(η5-CpX)2 (M = Zn and Cd, CpX = C5Me5 and C5H5) complexes , 2005 .

[7]  Pekka Pyykkö,et al.  Matrix Infrared Spectroscopic and ab Initio Studies of ZnH2, CdH2, and Related Metal Hydride Species , 1995 .

[8]  Agustín Galindo,et al.  Theoretical and synthetic studies on [Zn2(eta5-C5Me5)2]: analysis of the Zn-Zn bonding interaction. , 2005, Angewandte Chemie.

[9]  Evert Jan Baerends,et al.  Geometry optimizations in the zero order regular approximation for relativistic effects. , 1999 .

[10]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[11]  Dieter Cremer,et al.  The Concept of the Chemical Bond , 1990 .

[12]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[13]  W. Frank,et al.  Schwermetall-π-Komplexe II [1] Arenkomplexe des Quecksilbers(I) , 1987 .

[14]  Keiji Morokuma,et al.  Molecular Orbital Studies of Hydrogen Bonds. III. C=O···H–O Hydrogen Bond in H2CO···H2O and H2CO···2H2O , 1971 .

[15]  F. Matthias Bickelhaupt,et al.  Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis , 2004, J. Comput. Chem..

[16]  E. Gutiérrez‐Puebla,et al.  Decamethyldizincocene, a Stable Compound of Zn(I) with a Zn-Zn Bond , 2004, Science.

[17]  F. Albert Cotton,et al.  Advanced Inorganic Chemistry , 1999 .

[18]  Martin Kaupp,et al.  ORIGIN OF THE UNIQUE STABILITY OF CONDENSED-PHASE HG22+. AN AB INITIO INVESTIGATION OF MI AND MII SPECIES (M = ZN, CD, HG) , 1994 .

[19]  Ph. Durand,et al.  Regular Two-Component Pauli-Like Effective Hamiltonians in Dirac Theory , 1986 .

[20]  Evert Jan Baerends,et al.  The zero order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules. , 1996 .

[21]  Lester Andrews,et al.  Infrared Spectra of Zn and Cd Hydride Molecules and Solids , 2004 .

[22]  Arvi Rauk,et al.  Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus trifluoride, and methyl isocyanide as .sigma. donors and .pi. acceptors. A theoretical study by the Hartree-Fock-Slater transition-state method , 1979 .

[23]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[24]  Hongyan Wang,et al.  On the chemistry of Zn-Zn bonds, RZn-ZnR (R = [{(2,6-Pri2C6H3)N(Me)C}2CH]): synthesis, structure, and computations. , 2005, Journal of the American Chemical Society.

[25]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[26]  G. Parkin Zinc-Zinc Bonds: A New Frontier , 2004, Science.

[27]  Keiji Morokuma,et al.  Why do molecules interact? The origin of electron donor-acceptor complexes, hydrogen bonding and proton affinity , 1977 .

[28]  Evert Jan Baerends,et al.  Relativistic regular two-component Hamiltonians. , 1996 .

[29]  C. A. Ghilardi,et al.  X-Ray crystal structure of [N(CH2CH2PPh2)3]2Co2(µ-Hg2); the dimeric Hg22+ ion forms a linear bridge between the two cobalt atoms , 1981 .

[30]  G. Frenking,et al.  The Nature of the Transition Metal–Carbonyl Bond and the Question about the Valence Orbitals of Transition Metals. A Bond Energy Decomposition Analysis of TM(CO)6q (TMq = Hf2–, Ta1–, W0, Re1+, Os2+, Ir3+) , 2000 .

[31]  Yaoming Xie,et al.  The dichotomy of dimetallocenes: coaxial versus perpendicular dimetal units in sandwich compounds. , 2005, Journal of the American Chemical Society.

[32]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[33]  张乾二,et al.  PROPERTIES AND STABILITIES OF MX, MX2 AND M2X2 COMPOUNDS (M = ZN, CD, HG ;X = F, CL, BR, I) , 1995 .

[34]  Hong Seok Kang,et al.  Theoretical study of complexes of extended cyclopentadienyl ligands with zinc and cadmium. , 2005, The journal of physical chemistry. A.

[35]  Nicolaas J. R. van Eikema Hommes,et al.  The Carbon−Lithium Electron Pair Bond in (CH3Li)n (n = 1, 2, 4) , 1996 .

[36]  R. Gillespie,et al.  The cadmium(I) ion, Cd22+; X-ray crystal structure of Cd2(AlCl4)2 , 1986 .

[37]  D. Reger,et al.  Syntheses of the first molecular complexes containing a cadmium-cadmium bond and a cadmium-hydrogen bond , 1993 .

[38]  Arvi Rauk,et al.  On the calculation of bonding energies by the Hartree Fock Slater method , 1977 .