Network Models for Multiobjective Discrete Optimization

This paper provides a novel framework for solving multiobjective discrete optimization problems with an arbitrary number of objectives. Our framework formulates these problems as network models, in that enumerating the Pareto frontier amounts to solving a multicriteria shortest path problem in an auxiliary network. We design tools and techniques for exploiting the network model in order to accelerate the identification of the Pareto frontier, most notably a number of operations to simplify the network by removing nodes and arcs while preserving the set of nondominated solutions. We show that the proposed framework yields orders-of-magnitude performance improvements over existing state-of-the-art algorithms on four problem classes containing both linear and nonlinear objective functions.

[1]  M. I. Henig The shortest path problem with two objective functions , 1986 .

[2]  Martin W. P. Savelsbergh,et al.  A Criterion Space Search Algorithm for Biobjective Integer Programming: The Balanced Box Method , 2015, INFORMS J. Comput..

[3]  George Mavrotas,et al.  Multi-criteria branch and bound: A vector maximization algorithm for Mixed 0-1 Multiple Objective Linear Programming , 2005, Appl. Math. Comput..

[4]  L. Lasdon,et al.  On a bicriterion formation of the problems of integrated system identification and system optimization , 1971 .

[5]  Anthony Przybylski,et al.  Multiple objective branch and bound for mixed 0-1 linear programming: Corrections and improvements for the biobjective case , 2013, Comput. Oper. Res..

[6]  Nathan Adelgren,et al.  Branch-and-bound for biobjective mixed integer programming , 2017 .

[7]  Margarida Vaz Pato,et al.  A two state reduction based dynamic programming algorithm for the bi-objective 0-1 knapsack problem , 2011, Comput. Math. Appl..

[8]  Serpil Sayin,et al.  A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems , 2014, Eur. J. Oper. Res..

[9]  John N. Hooker,et al.  Cost-Bounded Binary Decision Diagrams for 0-1 Programming , 2007, CPAIOR.

[10]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[11]  David Bergman,et al.  Multiobjective Optimization by Decision Diagrams , 2016, CP.

[12]  Gabriel R. Bitran,et al.  Linear multiple objective programs with zero–one variables , 1977, Math. Program..

[13]  S. L. Gadegaard,et al.  Bi-objective branch – and – cut algorithms : Applications to the single source capacitated facility location problem , 2016 .

[14]  Alexandre C. B. Delbem,et al.  Multiobjective evolutionary algorithm with many tables for purely ab initio protein structure prediction , 2013, J. Comput. Chem..

[15]  Carla P. Gomes,et al.  Boosting Efficiency for Computing the Pareto Frontier on Tree Structured Networks , 2018, CPAIOR.

[16]  H. Moskowitz,et al.  Generalized dynamic programming for multicriteria optimization , 1990 .

[17]  J. M. Rivera,et al.  A combined approach to solve binary multicriteria problems , 1982 .

[18]  Martin W. P. Savelsbergh,et al.  A new method for optimizing a linear function over the efficient set of a multiobjective integer program , 2017, Eur. J. Oper. Res..

[19]  Thomas R. Stidsen,et al.  A Branch and Bound Algorithm for a Class of Biobjective Mixed Integer Programs , 2014, Manag. Sci..

[20]  Olivier Spanjaard,et al.  Using Bound Sets in Multiobjective Optimization: Application to the Biobjective Binary Knapsack Problem , 2010, SEA.

[21]  Alejandro Crema,et al.  A method for finding the set of non-dominated vectors for multiple objective integer linear programs , 2004, Eur. J. Oper. Res..

[22]  Bernardo Villarreal,et al.  Multicriteria integer programming: A (hybrid) dynamic programming recursive approach , 1981, Math. Program..

[23]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[24]  Dhish Kumar Saxena,et al.  Timing the Decision Support for Real-World Many-Objective Optimization Problems , 2017, EMO.

[25]  Barry O'Sullivan,et al.  Approximate Compilation of Constraints into Multivalued Decision Diagrams , 2008, CP.

[26]  Donald Kossmann,et al.  The Skyline operator , 2001, Proceedings 17th International Conference on Data Engineering.

[27]  M. Wiecek,et al.  Dynamic programming approaches to the multiple criteria knapsack problem , 2000 .

[28]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[29]  Yan Yu,et al.  Multi-objective optimization in radiotherapy: applications to stereotactic radiosurgery and prostate brachytherapy , 2000, Artif. Intell. Medicine.

[30]  Daniel Vanderpooten,et al.  Solving efficiently the 0-1 multi-objective knapsack problem , 2009, Comput. Oper. Res..

[31]  Benjamin A. Burton,et al.  Multi-Objective Integer Programming: An Improved Recursive Algorithm , 2011, Journal of Optimization Theory and Applications.

[32]  Sophie N. Parragh,et al.  Branch-and-bound for bi-objective integer programming , 2018, INFORMS J. Comput..

[33]  R. A. Zemlin,et al.  Integer Programming Formulation of Traveling Salesman Problems , 1960, JACM.

[34]  J. Dickersbach Supply Chain Management with APO: Structures, Modelling Approaches and Implementation of mySAP SCM 4.1 , 2005 .

[35]  Patrice Perny,et al.  Bidirectional Preference-Based Search for State Space Graph Problems , 2013, SOCS.

[36]  David Bergman,et al.  Manipulating MDD Relaxations for Combinatorial Optimization , 2011, CPAIOR.

[37]  Margaret M. Wiecek,et al.  An improved algorithm for solving biobjective integer programs , 2006, Ann. Oper. Res..

[38]  Matthias Ehrgott,et al.  A discussion of scalarization techniques for multiple objective integer programming , 2006, Ann. Oper. Res..

[39]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[40]  Ingo Wegener,et al.  Branching Programs and Binary Decision Diagrams , 1987 .

[41]  Stefano Giordano,et al.  A survey on multi-constrained optimal path computation: Exact and approximate algorithms , 2010, Comput. Networks.

[42]  Kathrin Klamroth,et al.  A linear bound on the number of scalarizations needed to solve discrete tricriteria optimization problems , 2013, J. Glob. Optim..

[43]  André Augusto Ciré,et al.  Decision diagrams for optimization , 2018, Constraints.

[44]  Murat Köksalan,et al.  Finding all nondominated points of multi-objective integer programs , 2013, J. Glob. Optim..

[45]  Clarisse Dhaenens,et al.  K-PPM: A new exact method to solve multi-objective combinatorial optimization problems , 2010, Eur. J. Oper. Res..

[46]  Jrg Thomas Dickersbach Supply Chain Management with SAP APO™: Structures, Modelling Approaches and Implementation of SAP SCM™ 2008 , 2009 .

[47]  Edward L. Hannan,et al.  An algorithm for the multiple objective integer linear programming problem , 1982 .

[48]  José Rui Figueira,et al.  Dynamic programming algorithms for the bi-objective integer knapsack problem , 2014, Eur. J. Oper. Res..

[49]  Sofia Cassel,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 2012 .

[50]  David K. Smith,et al.  Dynamic Programming and Optimal Control. Volume 1 , 1996 .

[51]  Martin W. P. Savelsbergh,et al.  The Quadrant Shrinking Method: A simple and efficient algorithm for solving tri-objective integer programs , 2017, Eur. J. Oper. Res..

[52]  X. Gandibleux,et al.  Exact Methods for Multi-Objective Combinatorial Optimisation , 2016 .

[53]  G. Nemhauser,et al.  Decomposition of loosely coupled integer programs: a multiobjective perspective , 2022, Mathematical Programming.

[54]  José Rui Figueira,et al.  A reduction dynamic programming algorithm for the bi-objective integer knapsack problem , 2013, Eur. J. Oper. Res..

[55]  Anthony Przybylski,et al.  A two phase method for multi-objective integer programming and its application to the assignment problem with three objectives , 2010, Discret. Optim..

[56]  José Rui Figueira,et al.  Solving bicriteria 0-1 knapsack problems using a labeling algorithm , 2003, Comput. Oper. Res..

[57]  Yan Zhang,et al.  Multi-Objective Aerodynamic Optimization Design Method of Compressor Rotor Based on Isight , 2011 .

[58]  Tallys H. Yunes,et al.  BDD-based heuristics for binary optimization , 2014, J. Heuristics.

[59]  Theodor J. Stewart,et al.  Real-World Applications of Multiobjective Optimization , 2008, Multiobjective Optimization.

[60]  Michael Masin,et al.  Diversity Maximization Approach for Multiobjective Optimization , 2008, Oper. Res..

[61]  Tolga Bektas,et al.  Disjunctive Programming for Multiobjective Discrete Optimisation , 2018, INFORMS J. Comput..

[62]  Satyaveer Goud Gudala Skyline queries for multi-criteria decision support systems , 2012 .

[63]  Mark H. Karwan,et al.  Multicriteria dynamic programming with an application to the integer case , 1982 .

[64]  Melih Özlen,et al.  Multi-objective integer programming: A general approach for generating all non-dominated solutions , 2009, Eur. J. Oper. Res..

[65]  Marco Laumanns,et al.  An Adaptive Scheme to Generate the Pareto Front Based on the Epsilon-Constraint Method , 2005, Practical Approaches to Multi-Objective Optimization.

[66]  Gilbert Laporte,et al.  A Generic Branch-and-Cut Algorithm for Multiobjective Optimization Problems: Application to the Multilabel Traveling Salesman Problem , 2012, INFORMS J. Comput..

[67]  Zbigniew Tarapata,et al.  Selected Multicriteria Shortest Path Problems: An Analysis of Complexity, Models and Adaptation of Standard Algorithms , 2007, Int. J. Appl. Math. Comput. Sci..

[68]  Subhash C. NarulaI,et al.  The Minimum Sum of Absolute Errors Regression: A State of the Art Survey , 1982 .

[69]  Serpil Sayin,et al.  The Multiobjective Discrete Optimization Problem: A Weighted Min-Max Two-Stage Optimization Approach and a Bicriteria Algorithm , 2005, Manag. Sci..

[70]  John N. Hooker,et al.  Decision Diagrams and Dynamic Programming , 2013, CPAIOR.

[71]  Murat Köksalan,et al.  An Exact Algorithm for Finding Extreme Supported Nondominated Points of Multiobjective Mixed Integer Programs , 2010, Manag. Sci..

[73]  Ralph E. Steuer,et al.  An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..

[74]  Francis Sourd,et al.  A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem , 2008, INFORMS J. Comput..

[75]  George Mavrotas,et al.  A branch and bound algorithm for mixed zero-one multiple objective linear programming , 1998, Eur. J. Oper. Res..

[76]  Luís Paquete,et al.  Algorithmic improvements on dynamic programming for the bi-objective {0,1} knapsack problem , 2013, Comput. Optim. Appl..

[77]  Marco Laumanns,et al.  An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method , 2006, Eur. J. Oper. Res..

[78]  Martin W. P. Savelsbergh,et al.  The L-shape search method for triobjective integer programming , 2016, Math. Program. Comput..

[79]  Randal E. Bryant,et al.  Symbolic Boolean manipulation with ordered binary-decision diagrams , 1992, CSUR.

[80]  José Rui Figueira,et al.  Labeling algorithms for multiple objective integer knapsack problems , 2010, Comput. Oper. Res..