Min-transitivity of graded comparisons for random variables

Classically, the comparison of random variables have been done by means of a crisp order, which is known as stochastic dominance. In the last years, the classical stochastic dominance have been extended to a graded version by means of a probabilistic relation. In this work we propose different ways of measuring the gradual order among random variables by using fuzzy relations instead of probabilistic relations. The connection between the cycle-transitivity of the probabilistic relation and the T-transitivity of the associated fuzzy weak preference relation is characterized in the particular case of the minimum t-norm.

[1]  Bernard De Baets,et al.  On the cycle-transitive comparison of artificially coupled random variables , 2008, Int. J. Approx. Reason..

[2]  B. De Baets,et al.  On the Cycle-Transitivity of the Dice Model , 2003 .

[3]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[4]  Davide Martinetti,et al.  STATISTICAL PREFERENCE AS A COMPARISON METHOD OF TWO IMPRECISE FITNESS VALUES , 2010 .

[5]  B. Baets,et al.  Twenty years of fuzzy preference structures (1978–1997) , 1997 .

[6]  Bernard De Baets,et al.  Characterizable fuzzy preference structures , 1998, Ann. Oper. Res..

[7]  Bernard De Baets,et al.  Fuzzy preference structures without incomparability , 1995, Fuzzy Sets Syst..

[8]  Bernard De Baets,et al.  Transitive comparison of random variables , 2005 .

[9]  Bernard De Baets,et al.  Additive decomposition of fuzzy pre-orders , 2007, Fuzzy Sets Syst..

[10]  Jorge Casillas,et al.  Genetic learning of fuzzy rules based on low quality data , 2009, Fuzzy Sets Syst..

[11]  Bernard De Baets,et al.  A Fuzzy Approach to Stochastic Dominance of Random Variables , 2003, IFSA.

[12]  Bernard De Baets,et al.  Cyclic Evaluation of Transitivity of Reciprocal Relations , 2006, Soc. Choice Welf..

[13]  H. Levy Stochastic Dominance: Investment Decision Making under Uncertainty , 2010 .

[14]  B. De Baets,et al.  Cycle-transitive comparison of independent random variables , 2005 .

[15]  Bonifacio Llamazares,et al.  Aggregation of fuzzy preferences: Some rules of the mean , 2000, Soc. Choice Welf..

[16]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[17]  Bernard De Baets,et al.  A plea for the use of Lukasiewicz triplets in the definition of fuzzy preference structures. (I). General argumentation , 1998, Fuzzy Sets Syst..

[18]  A. Müller,et al.  Comparison Methods for Stochastic Models and Risks , 2002 .

[19]  Bernard De Baets,et al.  On the compositional characterization of complete fuzzy pre-orders , 2008, Fuzzy Sets Syst..

[20]  Bernard De Baets,et al.  Generator triplets of additive fuzzy preference structures. , 2001 .

[21]  B. De Baets,et al.  Transitivity frameworks for reciprocal relations: cycle-transitivity versus FG-transitivity , 2005, Fuzzy Sets Syst..

[22]  Bernard De Baets,et al.  Transitivity Bounds in Additive Fuzzy Preference Structures , 2007, IEEE Transactions on Fuzzy Systems.

[23]  Bernard De Baets,et al.  On the Transitivity of Fuzzy Indifference Relations , 2003, IFSA.

[24]  Bernard De Baets,et al.  Transitivity relationships in fuzzy preference structures without incomparability , 1995 .

[25]  Bernard De Baets,et al.  Transitive decomposition of fuzzy preference relations: the case of nilpotent minimum , 2004, Kybernetika.

[26]  B. Baets,et al.  Extreme Copulas and the Comparison of Ordered Lists , 2007 .

[27]  B. De Baets,et al.  On the transitivity of the comonotonic and countermonotonic comparison of random variables , 2007 .

[28]  R. Nelsen An Introduction to Copulas , 1998 .

[29]  Bernard De Baets,et al.  General results on the decomposition of transitive fuzzy relations , 2010, Fuzzy Optim. Decis. Mak..