Effect of channel thickness on density of states in amorphous InGaZnO thin film transistor

We report on the origin of threshold voltage shift with the thickness of amorphous InGaZnO channel layer deposited by rf magnetron sputter at room temperature, using density of states extracted from multi frequency method and falling rates of activation energy, which of trends are entirely consistent each other in respect of the reduction of total traps with increasing the channel thickness. Furthermore, we shows that the behavior of ΔVth under the positive gate bias stress and thermal stress can be explained by charge trapping mechanism based on total trap variation.

[1]  A. Mercha,et al.  Analysis of the activation energy of the subthreshold current in laser- and solid-phase-crystallized polycrystalline silicon thin-film transistors , 2000 .

[2]  Dong Myong Kim,et al.  Modeling of amorphous InGaZnO thin-film transistors based on the density of states extracted from the optical response of capacitance-voltage characteristics , 2008 .

[3]  Hideo Hosono,et al.  Modeling of amorphous InGaZnO4 thin film transistors and their subgap density of states , 2008 .

[4]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[5]  J. Kanicki,et al.  Density of States of a-InGaZnO From Temperature-Dependent Field-Effect Studies , 2009, IEEE Transactions on Electron Devices.

[6]  R. B. M. Cross,et al.  Investigating the stability of zinc oxide thin film transistors , 2006 .

[7]  Dong Myong Kim,et al.  Extraction of Subgap Density of States in Amorphous InGaZnO Thin-Film Transistors by Using Multifrequency Capacitance–Voltage Characteristics , 2010, IEEE Electron Device Letters.

[8]  H. Ohta,et al.  Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor , 2003, Science.

[9]  Hyun-Joong Chung,et al.  Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water , 2008 .

[10]  Hideo Hosono,et al.  Subgap states in transparent amorphous oxide semiconductor, In–Ga–Zn–O, observed by bulk sensitive x-ray photoelectron spectroscopy , 2008 .

[11]  John F. Muth,et al.  Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors , 2008 .

[12]  R. Street Thin‐Film Transistors , 2009 .

[13]  F. Ren,et al.  High performance indium gallium zinc oxide thin film transistors fabricated on polyethylene terephthalate substrates , 2008 .

[14]  Changjung Kim,et al.  Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules , 2007 .

[15]  T. Aoki,et al.  Three-dimensionally stacked flexible integrated circuit: Amorphous oxide/polymer hybrid complementary inverter using n-type a-In–Ga–Zn–O and p-type poly-(9,9-dioctylfluorene-co-bithiophene) thin-film transistors , 2010 .

[16]  Jaehak Lee,et al.  High-resolution soft x-ray spectroscopic study on amorphous gallium indium zinc oxide thin films , 2010 .

[17]  Hideo Hosono,et al.  Origins of threshold voltage shifts in room-temperature deposited and annealed a-In–Ga–Zn–O thin-film transistors , 2009 .

[18]  Yeon-Gon Mo,et al.  Control of threshold voltage in ZnO-based oxide thin film transistors , 2008 .