MSRS: A fast linear solver for the real-time simulation of deformable objects

Nowadays many interactive computer graphics applications deal with soft-bodies. These applications are always demanding higher and higher levels of realism, increasing the complexity of the animated scenarios. Therefore, the techniques used to animate the objects should be very efficient to grant interactivity. Most often, an accurate answer is not needed and a visually plausible one is enough. One of the most important issues in physically based simulations is to keep the model stable under all simulation conditions. In this paper we present a technique called matrix system reduction solver (MSRS) to highly accelerate the real-time simulation of a finite element-based technique. Our method is fast, visually plausible and robust. In the first stage of the algorithm an initial solution is estimated. Then, only those equations showing a large error are solved using a more precise technique. In the final stage the linear and angular momenta are corrected. Experimental results show the feasibility of this new approach from the point of view of performance compared to the results provided by the stiffness warping method.

[1]  Markus H. Gross,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Adaptive Deformations with Fast Tight Bounds , 2022 .

[2]  William H. Press,et al.  Numerical recipes , 1990 .

[3]  Hyeong-Seok Ko,et al.  Modal warping: real-time simulation of large rotational deformation and manipulation , 2004, IEEE Transactions on Visualization and Computer Graphics.

[4]  Mark Lehto,et al.  A review of: “Virtual Reality Technology” Grigore Burdea and Philippe Coiffet John Wiley & Sons, Inc., 1994 , 1996 .

[5]  Morten Bro-Nielsen,et al.  Real‐time Volumetric Deformable Models for Surgery Simulation using Finite Elements and Condensation , 1996, Comput. Graph. Forum.

[6]  Ronald Fedkiw,et al.  Tetrahedral and hexahedral invertible finite elements , 2006, Graph. Model..

[7]  Leonard McMillan,et al.  Stable real-time deformations , 2002, SCA '02.

[8]  Frank Tendick,et al.  Multigrid Integration for Interactive Deformable Body Simulation , 2004, ISMS.

[9]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[10]  Leonidas J. Guibas,et al.  Meshless animation of fracturing solids , 2005, ACM Trans. Graph..

[11]  Ivan E. Sutherland,et al.  Sketchpad a Man-Machine Graphical Communication System , 1899, Outstanding Dissertations in the Computer Sciences.

[12]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[13]  Marc Alexa,et al.  Point based animation of elastic, plastic and melting objects , 2004, SCA '04.

[14]  Nadia Magnenat-Thalmann,et al.  Implementing fast cloth simulation with collision response , 2000, Proceedings Computer Graphics International 2000.

[15]  Rüdiger Westermann,et al.  Workshop on Virtual Reality Interaction and Physical Simulation (2005) a Multigrid Framework for Real-time Simulation of Deformable Volumes , 2022 .

[16]  Eitan Grinspun,et al.  CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..

[17]  Y. Saad,et al.  Iterative solution of linear systems in the 20th century , 2000 .

[18]  Ronald Fedkiw,et al.  Finite volume methods for the simulation of skeletal muscle , 2003, SCA '03.

[19]  Steve Capell,et al.  Interactive skeleton-driven dynamic deformations , 2002, ACM Trans. Graph..

[20]  K. Bathe Finite Element Procedures , 1995 .

[21]  Andrei Khodakovsky,et al.  Multilevel Solvers for Unstructured Surface Meshes , 2005, SIAM J. Sci. Comput..

[22]  James F. O'Brien,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH '02.

[23]  Kun Zhou,et al.  Geometrically based potential energy for simulating deformable objects , 2006, The Visual Computer.

[24]  Wolfgang Straßer,et al.  A fast finite element solution for cloth modelling , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[25]  Frank Tendick,et al.  Adaptive Nonlinear Finite Elements for Deformable Body Simulation Using Dynamic Progressive Meshes , 2001, Comput. Graph. Forum.

[26]  Mathieu Desbrun,et al.  Dynamic real-time deformations using space & time adaptive sampling , 2001, SIGGRAPH.

[27]  Keith Waters,et al.  A muscle model for animation three-dimensional facial expression , 1987, SIGGRAPH.

[28]  Mathieu Desbrun,et al.  Interactive Animation of Structured Deformable Objects , 1999, Graphics Interface.

[29]  Alex Pentland,et al.  Good vibrations: modal dynamics for graphics and animation , 1989, SIGGRAPH.

[30]  R. Fedkiw,et al.  Online Submission ID: papers 0432 Volume Conserving Finite Element Simulations of Deformable Models , 2022 .

[31]  Taku Komura,et al.  Computing inverse kinematics with linear programming , 2005, VRST '05.

[32]  Yohan Payan,et al.  Efficient, Physically Plausible Finite Elements , 2005, Eurographics.

[33]  M. Teschner,et al.  Meshless deformations based on shape matching , 2005, SIGGRAPH 2005.

[34]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.

[35]  Hujun Bao,et al.  An efficient large deformation method using domain decomposition , 2006, Comput. Graph..

[36]  Wolfgang Straßer,et al.  Corotational Simulation of Deformable Solids , 2004, WSCG.

[37]  Pablo Toharia,et al.  Comparing Sphere-Tree Generators and Hierarchy Updates for Deformable Objects Collision Detection , 2005, ISVC.

[38]  Mathieu Desbrun,et al.  Interactive multiresolution animation of deformable models , 1999, Computer Animation and Simulation.

[39]  R. Glowinski,et al.  Conjugate gradient algorithms and finite element methods , 2004 .

[40]  Ronald Fedkiw,et al.  Creating and simulating skeletal muscle from the visible human data set , 2005, IEEE Transactions on Visualization and Computer Graphics.

[41]  David E. Breen,et al.  Predicting the drape of woven cloth using interacting particles , 1994, SIGGRAPH.

[42]  Hervé Delingette,et al.  Nonlinear and anisotropic elastic soft tissue models for medical simulation , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[43]  Lin Shi,et al.  A fast multigrid algorithm for mesh deformation , 2006, SIGGRAPH 2006.

[44]  Markus H. Gross,et al.  Interactive Virtual Materials , 2004, Graphics Interface.

[45]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[46]  Andrew Nealen,et al.  Physically Based Deformable Models in Computer Graphics , 2006, Comput. Graph. Forum.

[47]  Demetri Terzopoulos,et al.  Symmetry-seeking models and 3D object reconstruction , 1988, International Journal of Computer Vision.

[48]  J. Lenoir,et al.  Mixing deformable and rigid-body mechanics simulation , 2004 .

[49]  Guillaume Picinbono Modèles géométriques et physiques pour la simulation d'interventions chirurgicales. (Geometrical and physical models for surgery simulation) , 2001 .

[50]  James Stewart,et al.  Proceedings of the 1999 conference on Graphics interface '99 , 1999 .

[51]  Luis Pastor,et al.  An adaptive multiresolution mass-spring model , 2005, Visual Communications and Image Processing.

[52]  Philippe Coiffet,et al.  Virtual Reality Technology , 2003, Presence: Teleoperators & Virtual Environments.

[53]  Dinesh K. Pai,et al.  ArtDefo: accurate real time deformable objects , 1999, SIGGRAPH.

[54]  Christophe Chaillou,et al.  A fast implicit integration method for solving dynamic equations of movement , 2001, VRST '01.

[55]  Demetri Terzopoulos,et al.  Modelling and animating faces using scanned data , 1991, Comput. Animat. Virtual Worlds.

[56]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[57]  Demetri Terzopoulos,et al.  Physically-based facial modelling, analysis, and animation , 1990, Comput. Animat. Virtual Worlds.

[58]  Michael Gleicher,et al.  A differential approach to graphical interaction , 1994 .

[59]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[60]  Thomas Sangild Sørensen,et al.  A GPU accelerated spring mass system for surgical simulation. , 2005, Studies in health technology and informatics.

[61]  Michael Gleicher,et al.  Supporting Numerical Computations in Interactive Contexts , 1998 .

[62]  Luis Pastor,et al.  Optimized linear FEM for modeling deformable objects , 2006, Comput. Animat. Virtual Worlds.

[63]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[64]  Matthias Teschner,et al.  Local Constraint Methods for Deformable Objects , 2006, VRIPHYS.

[65]  Ronald Fedkiw,et al.  Dynamic simulation of articulated rigid bodies with contact and collision , 2006, IEEE Transactions on Visualization and Computer Graphics.

[66]  H. Markowitz The Elimination form of the Inverse and its Application to Linear Programming , 1957 .