Experimental evaluation and cross-benchmarking of univariate real solvers
暂无分享,去创建一个
Bernard Mourrain | Ioannis Z. Emiris | Menelaos I. Karavelas | Zafeirakis Zafeirakopoulos | Elias P. Tsigaridas | Michael Hemmer | I. Emiris | B. Mourrain | M. Hemmer | M. Karavelas | E. Tsigaridas | Z. Zafeirakopoulos
[1] Matthew H. Austern. Generic programming and the STL - using and extending the C++ standard template library , 1999, Addison-Wesley professional computing series.
[2] C. Yap,et al. Amortized Bound for Root Isolation via Sturm Sequences , 2007 .
[3] Lutz Kettner,et al. Definition of File Format for Benchmark Instances for Arrangements of Quadrics , 2006 .
[4] Ioannis Z. Emiris,et al. Exact and efficient evaluation of the InCircle predicate for parametric ellipses and smooth convex objects , 2008, Comput. Aided Des..
[5] Ioannis Z. Emiris,et al. A real-time and exact implementation of the predicates for the Voronoi diagram of parametric ellipses , 2007, Symposium on Solid and Physical Modeling.
[6] Chee-Keng Yap,et al. Almost tight recursion tree bounds for the Descartes method , 2006, ISSAC '06.
[7] Victor Y. Pan,et al. Univariate Polynomials: Nearly Optimal Algorithms for Numerical Factorization and Root-finding , 2002, J. Symb. Comput..
[8] Elias P. Tsigaridas,et al. Algebraic algorithms and applications to geometry , 2006 .
[9] Maurice Mignotte,et al. Mathematics for computer algebra , 1991 .
[10] Alkiviadis G. Akritas,et al. Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.
[11] George E. Collins,et al. Interval Arithmetic in Cylindrical Algebraic Decomposition , 2002, J. Symb. Comput..
[12] Ioannis Z. Emiris,et al. On the complexity of real root isolation using continued fractions , 2008, Theor. Comput. Sci..
[13] Ioannis Z. Emiris,et al. The Predicates for the Exact Voronoi Diagram of Ellipses under the Euclidiean Metric , 2008, Int. J. Comput. Geom. Appl..
[14] Matthew Harold Austern,et al. Generic programming and the STL , 1998 .
[15] Arno Eigenwillig,et al. Real root isolation for exact and approximate polynomials using Descartes' rule of signs , 2008 .
[16] Ioannis Z. Emiris,et al. Real algebraic numbers and polynomial systems of small degree , 2008, Theor. Comput. Sci..
[17] Bernard Mourrain,et al. Real Algebraic Numbers: Complexity Analysis and Experimentation , 2008, Reliable Implementation of Real Number Algorithms.
[18] Michael N. Vrahatis,et al. On the Complexity of Isolating Real Roots and Computing with Certainty the Topological Degree , 2002, J. Complex..
[19] Victor Y. Pan,et al. Univariate polynomials: nearly optimal algorithms for factorization and rootfinding , 2001, ISSAC '01.
[20] Alkiviadis G. Akritas,et al. Improving the Performance of the Continued Fractions Method Using New Bounds of Positive Roots , 2008 .
[21] Giuseppe Fiorentino,et al. Design, analysis, and implementation of a multiprecision polynomial rootfinder , 2000, Numerical Algorithms.
[22] 下山 武司. Cylindrical Algebraic Decomposition と実代数制約(数式処理における理論とその応用の研究) , 1995 .
[23] George E. Collins,et al. Cylindrical Algebraic Decomposition I: The Basic Algorithm , 1984, SIAM J. Comput..
[24] I. Emiris,et al. Real Algebraic Numbers: Complexity Analysis and Experimentations , 2008 .
[25] Sylvain Lazard,et al. A CGAL-based Univariate Algebraic Kernel and Application to Arrangements , 2008 .
[26] Michael Hemmer,et al. Generic implementation of a modular GCD over Algebraic Extension Fields , 2009 .
[27] Monique Teillaud,et al. Revision of interface specification of algebraic kernel , 2007 .
[28] Bernard Mourrain,et al. SYNAPS: A Library for Dedicated Applications in Symbolic Numeric Computing , 2008 .
[29] Kurt Mehlhorn,et al. Effective Computational Geometry for Curves and Surfaces , 2005 .
[30] Kurt Mehlhorn,et al. A Descartes Algorithm for Polynomials with Bit-Stream Coefficients , 2005, CASC.
[31] P. Zimmermann,et al. Efficient isolation of polynomial's real roots , 2004 .
[32] Jeremy R. Johnson,et al. High-performance implementations of the Descartes method , 2006, ISSAC '06.
[33] R. Riesenfeld,et al. Bounds on a polynomial , 1981 .
[34] Sylvain Lazard,et al. Univariate Algebraic Kernel and Application to Arrangements , 2009, SEA.