We have surveyed the commercial resist market with the dual purpose of identifying diazoquinone/novolac based resists that have potential for use as e-beam mask making resists and baselining these resists for comparison against future mask making resist candidates. For completeness, this survey would require that each resist be compared with an optimized developer and development process. To accomplish this task in an acceptable time period, e-beam lithography modeling was employed to quickly identify the resist and developer combinations that lead to superior resist performance. We describe the verification of a method to quickly screen commercial i-line resists with different developers, by determining modeling parameters for i-line resists from e-beam exposures, modeling the resist performance, and comparing predicted performance versus actual performance. We determined the lithographic performance of several DNQ/novolac resists whose modeled performance suggests that sensitivities of less than 40 (mu) C/cm2 coupled with less than 10-nm CD change per percent change in dose are possible for target 600-nm features. This was accomplished by performing a series of statistically designed experiments on the leading resists candidates to optimize processing variables, followed by comparing experimentally determined resist sensitivities, latitudes, and profiles of the DNQ/novolac resists a their optimized process.