Green and Sustainable Battery Materials: Past, Present, and Future

[1]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[2]  G. Cao,et al.  Understanding electrochemical potentials of cathode materials in rechargeable batteries , 2016 .

[3]  M. Whittingham Special Editorial Perspective: Beyond Li-Ion Battery Chemistry. , 2020, Chemical reviews.

[4]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[5]  D. Murphy,et al.  Topochemical reactions of rutile related structures with lithium , 1978 .

[6]  Jun Lu,et al.  Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy , 2017, Nature Communications.

[7]  Jihyun Hong,et al.  Aqueous rechargeable Li and Na ion batteries. , 2014, Chemical reviews.

[8]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[9]  J. Goodenough How we made the Li-ion rechargeable battery , 2018 .

[10]  David P. Wilkinson,et al.  Recent advances in all-solid-state rechargeable lithium batteries , 2017 .

[11]  J. Goodenough Energy storage materials: A perspective , 2015 .

[12]  Rachid Yazami,et al.  Surface chemistry and lithium storage capability of the graphite-lithium electrode , 1999 .

[13]  M. Armand,et al.  Building better batteries , 2008, Nature.

[14]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[15]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[16]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[17]  K. Buschow,et al.  From permanent magnets to rechargeable hydride electrodes , 1987 .

[18]  P. Novák,et al.  Electrochemically Active Polymers for Rechargeable Batteries. , 1997, Chemical reviews.

[19]  M. R. Palacín,et al.  Multivalent rechargeable batteries , 2019, Energy Storage Materials.

[20]  O. Fontaine,et al.  When batteries breathe without air , 2019, Nature Catalysis.

[21]  H. Ming,et al.  Self-catalytic approach to construct graphitized carbon shell for metal oxide: In-situ triggering mechanism and high-performance lithium-ion batteries applications , 2020 .

[22]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[23]  B. Scrosati,et al.  A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes , 1980 .

[24]  David G. Mackanic,et al.  Designing polymers for advanced battery chemistries , 2019, Nature Reviews Materials.