Thaw: A Tool for Approximating Cut Loci on a Triangulation of a Surface

The cut locus from a point on the surface of a convex polyhedron is a tree containing a line segment beginning at every vertex. In the limit of infinitely small triangles, the cut locus from a point on a triangulation of a smooth surface therefore tends to become dense in the smooth surface, whereas the cut locus from the same point on the smooth surface is also a tree, but of finite length. We introduce a method for avoiding this problem. The method involves introducing a minimal angular resolution and discarding those points of the cut locus on the triangulation for which the angle measured between the shortest geodesic curves meeting at these points is smaller than the given angular resolution. We also describe software based upon this method that allows one to visualize the cut locus from a point on a surface of the form (x/a) n +(y/b)n +(z/c) n = 1, where n is a positive even integer. We use the software to support a new conjecture that the cut locus of a general ellipsoid is a subarc of a curvature line of the ellipsoid.

[1]  R. Bishop Decomposition of cut loci , 1977 .

[2]  W. Degen,et al.  The Cut Locus of an Ellipsoid , 1997 .

[3]  H.W.M. Hendriks Sur le cut-locus d'une sousvariété de l'espace euclidien. Négligeabilité , 1992 .

[4]  Konrad Polthier,et al.  Geodesic Flow on Polyhedral Surfaces , 1999 .

[5]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[6]  Franz-Erich Wolter,et al.  Local and global geometric methods for analysis, interrogation, reconstruction, modification and design of shape , 2000, Proceedings Computer Graphics International 2000.

[7]  AurenhammerFranz Voronoi diagramsa survey of a fundamental geometric data structure , 1991 .

[8]  Minoru Tanaka,et al.  Loki: Software for Computing Cut Loci , 2002, Exp. Math..

[9]  I. Holopainen Riemannian Geometry , 1927, Nature.

[10]  David M. Mount,et al.  The Number of Shortest Paths on the Surface of a Polyhedron , 1990, SIAM J. Comput..

[11]  V. Ozols,et al.  CUT LOCI IN RIEMANNIAN MANIFOLDS , 1974 .

[12]  Franz-Erich Wolter Distance function and cut loci on a complete Riemannian manifold , 1979 .

[13]  Sanjiv Kapoor,et al.  Efficient computation of geodesic shortest paths , 1999, STOC '99.

[14]  M. Berger Riemannian Geometry During the Second Half of the Twentieth Century , 2000 .

[15]  X. Pennec Toward a generic framework for recognition based on uncertain geometric features , 1998 .

[16]  Michael A. Buchner,et al.  The structure of the cut locus in dimension less than or equal to six , 1978 .

[17]  Micha Sharir,et al.  On shortest paths in polyhedral spaces , 1986, STOC '84.

[18]  Boris Aronov,et al.  Star Unfolding of a Polytope with Applications , 1997, SIAM J. Comput..

[19]  Leslie Lamport,et al.  LaTeX - A Document Preparation System: User's Guide and Reference Manual, Second Edition , 1994 .

[20]  Joseph O'Rourke,et al.  An Implementation of Chen & Han's Shortest Paths Algorithm , 2000, Canadian Conference on Computational Geometry.

[21]  Adobe Press,et al.  Postscript language - tutorial and cookbook , 1986 .

[22]  Gilles Lambaré,et al.  Two-dimensional multivalued traveltime and amplitude maps by uniform sampling of a ray field , 1996 .

[23]  H. Hendriks SUR LE CUT-LOCUS D'UNE SOUS-VARIETE DE L'ESPACE EUCLIDIEN , 1990 .

[24]  Leslie Lamport,et al.  LATEX. A document preparation system. User's Guide and Reference Manual , 1996 .

[25]  Paul Sava,et al.  Huygens Wavefront Tracing: A Robust Alternative to Ray Tracing , 1998 .

[26]  L. Dujardin,et al.  A mathematical model for the shape of the hooks of cestodae , 1995 .

[27]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[28]  Michael A. Buchner,et al.  Simplicial structure of the real analytic cut locus , 1977 .

[29]  Konrad Polthier,et al.  Straightest geodesics on polyhedral surfaces , 2006, SIGGRAPH Courses.