Randomized and quantum algorithms yield a speed-up for initial-value problems
暂无分享,去创建一个
[1] S. Heinrich,et al. Optimal Summation and Integration by Deterministic, Randomized, and Quantum Algorithms , 2002 .
[2] Lov K. Grover. A fast quantum mechanical algorithm for database search , 1996, STOC '96.
[3] Fred J. Hickernell,et al. Monte Carlo and Quasi-Monte Carlo Methods 2000 , 2002 .
[4] Peter W. Shor,et al. Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[5] Stefan Heinrich. Quantum approximation I. Embeddings of finite-dimensional Lp spaces , 2004, J. Complex..
[6] G. Brassard,et al. Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.
[7] E. Novak. Deterministic and Stochastic Error Bounds in Numerical Analysis , 1988 .
[8] Boleslaw Z. Kacewicz. On sequential and parallel solution of initial value problems , 1990, J. Complex..
[9] Stefan Heinrich. Quantum Summation with an Application to Integration , 2002, J. Complex..
[10] Felix Wu,et al. The quantum query complexity of approximating the median and related statistics , 1998, STOC '99.
[11] Boleslaw Z. Kacewicz. Minimum asymptotic error of algorithms for solving ODE , 1988, J. Complex..
[12] Stefan Heinrich. Quantum approximation II. Sobolev embeddings , 2004, J. Complex..
[13] B. Kacewicz. How to increase the order to get minimal-error algorithms for systems of ODE , 1984 .
[14] Erich Novak. Quantum Complexity of Integration , 2001, J. Complex..
[15] Henryk Wozniakowski,et al. Path Integration on a Quantum Computer , 2002, Quantum Inf. Process..