Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling

We examine power dissipation in different clocking schemes for molecular quantum-dot cellular automata (QCA) circuits. 'Landauer clocking' involves the adiabatic transition of a molecular cell from the null state to an active state carrying data. Cell layout creates devices which allow data in cells to interact and thereby perform useful computation. We perform direct solutions of the equation of motion for the system in contact with the thermal environment and see that Landauer's Principle applies: one must dissipate an energy of at least k(B)T per bit only when the information is erased. The ideas of Bennett can be applied to keep copies of the bit information by echoing inputs to outputs, thus embedding any logically irreversible circuit in a logically reversible circuit, at the cost of added circuit complexity. A promising alternative which we term 'Bennett clocking' requires only altering the timing of the clocking signals so that bit information is simply held in place by the clock until a computational block is complete, then erased in the reverse order of computation. This approach results in ultralow power dissipation without additional circuit complexity. These results offer a concrete example in which to consider recent claims regarding the fundamental limits of binary logic scaling.

[1]  B. Schwartz,et al.  Ultrafast competition between energy and charge transfer in a functionalized electron donor/fullerene derivative , 2000 .

[2]  C. Lent,et al.  Clocked molecular quantum-dot cellular automata , 2003 .

[3]  P. D. Tougaw,et al.  Hierarchical design of quantum-dot cellular automata devices , 1999 .

[4]  Charles H. Bennett,et al.  Notes on Landauer's Principle, Reversible Computation, and Maxwell's Demon , 2002, physics/0210005.

[5]  Craig S. Lent,et al.  Role of correlation in the operation of quantum-dot cellular automata , 2001 .

[6]  Z. Li,et al.  Molecular QCA cells. 2. Characterization of an unsymmetrical dinuclear mixed-valence complex bound to a Au surface by an organic linker. , 2003, Inorganic chemistry.

[7]  Jieying Jiao,et al.  Building blocks for the molecular expression of quantum cellular automata. Isolation and characterization of a covalently bonded square array of two ferrocenium and two ferrocene complexes. , 2003, Journal of the American Chemical Society.

[8]  Rolf Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[9]  C. Lent,et al.  Demonstration of a six-dot quantum cellular automata system , 1998 .

[10]  P. Douglas Tougaw,et al.  Regular arrays of quantum-dot cellular automata “macrocells” , 2000 .

[11]  R. Landauer Uncertainty principle and minimal energy dissipation in the computer , 1982 .

[12]  Zhaohui Li,et al.  Scanning tunneling microscopy and spectroscopy investigations of QCA molecules. , 2003, Ultramicroscopy.

[13]  G. Tóth,et al.  Power gain in a quantum-dot cellular automata latch , 2002 .

[14]  L. Brillouin Maxwell's Demon Cannot Operate: Information and Entropy. I , 1951 .

[15]  Quantum cellular neural networks , 1996, cond-mat/0005038.

[16]  F. Rossi,et al.  Quantum information processing with semiconductor macroatoms. , 2000, Physical review letters.

[17]  An optically driven quantum dot quantum computer , 1999, 1999 57th Annual Device Research Conference Digest (Cat. No.99TH8393).

[18]  Gary H. Bernstein,et al.  Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors , 2003 .

[19]  C. Lent,et al.  Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. , 2003, Journal of the American Chemical Society.

[20]  Rolf Landauer,et al.  Energy requirements in communication , 1987 .

[21]  Gary H. Bernstein,et al.  Experimental demonstration of clocked single-electron switching in quantum-dot cellular automata , 2000 .

[22]  Gary H. Bernstein,et al.  Experimental demonstration of a leadless quantum-dot cellular automata cell , 2000 .

[23]  L. Szilard On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. , 1964, Behavioral science.

[24]  Dieter P. Kern,et al.  Towards quantum cellular automata operation in silicon: transport properties of silicon multiple dot structures , 2000 .

[25]  Charles H. Bennett Notes on the history of reversible computation , 2000, IBM J. Res. Dev..

[26]  Kang L. Wang,et al.  Feasibility study of the quantum XOR gate based on coupled asymmetric semiconductor quantum dots , 1999 .

[27]  P. D. Tougaw,et al.  Dynamic behavior of quantum cellular automata , 1996 .

[28]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[29]  Rainer Wawer,et al.  Quantum Networks: Dynamics of Open Nanostructures , 1998, VLSI Design.

[30]  Dieter P. Kern,et al.  Simultaneous operation of two adjacent double dots in silicon , 2001 .

[31]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[32]  L. A. Openov Resonant electron transfer between quantum dots , 1999, cond-mat/9906390.

[33]  J. Meindl,et al.  Limits on silicon nanoelectronics for terascale integration. , 2001, Science.

[34]  C. Lent,et al.  Molecular quantum-dot cellular automata , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[35]  P. D. Tougaw,et al.  Quantum cellular automata: the physics of computing with arrays of quantum dot molecules , 1994, Proceedings Workshop on Physics and Computation. PhysComp '94.

[36]  Peter M. Kogge,et al.  A Potentially Implementable FPGA for Quantum-Dot Cellular Automata , 2002 .

[37]  Ralph K. Cavin,et al.  Energy barriers, demons, and minimum energy operation of electronic devices , 2005 .

[38]  Pawel Hawrylak,et al.  Coupled quantum dots as quantum exclusive-OR gate , 1997 .

[39]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[40]  Toshiaki Hayashi,et al.  Time-dependent single-electron transport through quantum dots , 2006 .

[41]  P. D. Tougaw,et al.  Lines of interacting quantum‐dot cells: A binary wire , 1993 .

[42]  Amir Fijany,et al.  New Design for Quantum Dots Cellular Automata to obtain Fault Tolerant Logic Gates , 2001 .

[43]  G. Tóth,et al.  QUASIADIABATIC SWITCHING FOR METAL-ISLAND QUANTUM-DOT CELLULAR AUTOMATA , 1999, cond-mat/0004457.

[44]  R. W. Keyes,et al.  Fundamental limits of silicon technology , 2001, Proc. IEEE.

[45]  Gary H. Bernstein,et al.  Experimental demonstration of a binary wire for quantum-dot cellular automata , 1999 .

[46]  G. H. Massiha,et al.  New nano-electronic memory using multi-level logic principle , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[47]  Z. Li,et al.  Molecular QCA cells. 1. Structure and functionalization of an unsymmetrical dinuclear mixed-valence complex for surface binding. , 2003, Inorganic chemistry.

[48]  James A. Hutchby,et al.  Limits to binary logic switch scaling - a gedanken model , 2003, Proc. IEEE.

[49]  Michael T. Niemier,et al.  Logic in wire: using quantum dots to implement a microprocessor , 1999, Proceedings Ninth Great Lakes Symposium on VLSI.

[50]  C. Lent,et al.  Molecular quantum-dot cellular automata , 2003 .

[51]  C. Lent,et al.  Realization of a Functional Cell for Quantum-Dot Cellular Automata , 1997 .

[52]  C. Lent,et al.  Clocking of molecular quantum-dot cellular automata , 2001 .

[53]  G. Tóth,et al.  Quantum computing with quantum-dot cellular automata , 2001 .

[54]  F. Lombardi,et al.  Testing of quantum cellular automata , 2004, IEEE Transactions on Nanotechnology.

[55]  Konstantinos N. Plataniotis,et al.  QCA implementation of a multichannel filter for image processing , 2002 .

[56]  Gary H. Bernstein,et al.  External charge state detection of a double-dot system , 1997 .

[57]  Peter M. Kogge,et al.  Problems in designing with QCAs: Layout = Timing , 2001 .

[58]  Craig S. Lent,et al.  Bypassing the Transistor Paradigm , 2000, Science.

[59]  An optically driven quantum dot quantum computer , 1999 .

[60]  K. A. Valiev,et al.  Coherent charge qubits based on GaAs quantum dots with a built-in barrier , 2000 .

[61]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[62]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[63]  C. Lent,et al.  Maxwell's demon and quantum-dot cellular automata , 2003 .

[64]  R. Landauer,et al.  Minimal energy dissipation in logic , 1970 .

[65]  C. Lent,et al.  Power gain and dissipation in quantum-dot cellular automata , 2002 .

[66]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[67]  C. Lent,et al.  Quantum‐Dot Cellular Automata at a Molecular Scale , 2002 .

[68]  Vassil S. Dimitrov,et al.  RAM Design Using Quantum-Dot Cellular Automata , 2003 .

[69]  P. D. Tougaw,et al.  Bistable saturation in coupled quantum dots for quantum cellular automata , 1993 .

[70]  Jing Huang,et al.  Defect characterization for scaling of QCA devices [quantum dot cellular automata ] , 2004 .

[71]  W. Porod,et al.  Signal processing with near-neighbor-coupled time-varying quantum-dot arrays , 2000 .

[72]  Craig S. Lent,et al.  Bistable saturation due to single electron charging in rings of tunnel junctions , 1994 .

[73]  W. Porod,et al.  Application of mesoscopic magnetic rings for logic devices , 2004, 4th IEEE Conference on Nanotechnology, 2004..

[74]  William M. Humphreys,et al.  The Development of Design Tools for Fault Tolerant Quantum Dot Cellular Automata Based Logic , 2003 .

[75]  Craig S. Lent,et al.  An architecture for molecular computing using quantum-dot cellular automata , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[76]  Wolfgang Porod,et al.  Simulation of Field Coupled Computing Architectures Based on Magnetic Dot Arrays , 2002 .

[77]  P. Kogge,et al.  Memory in Motion : A Study of Storage Structures in QCA , 2002 .

[78]  Snider,et al.  Digital logic gate using quantum-Dot cellular automata , 1999, Science.