A Dissipation Gap Method for full‐field measurement‐based identification of elasto‐plastic material parameters

SUMMARY Using enriched data such as displacement fields obtained from digital image correlation is a pathway to the local identification of material parameters. Up to now, most of the identification techniques for nonlinear models are based on Finite Element Updating Methods. This article explains how an appropriate use of the Dissipation Gap Method can help in this context and be an interesting alternative to these classical techniques. The Dissipation Gap Methods rely on the concept of error in dissipation that has been used mainly for the verification of finite element simulations. We provide here an original application of these founding developments to the identification of material parameters for nonlinear behaviors. The proposed technique and especially the main technical keypoint of building the admissible fields are described in detail. The approach is then illustrated through the identification of heterogeneous isotropic elasto-plastic properties. The basic numerical features highlighted through these simple examples demonstrate this approach to be a promising tool for nonlinear identification.Copyright © 2012 John Wiley & Sons, Ltd.

[1]  W. H. Peters,et al.  Application of an optimized digital correlation method to planar deformation analysis , 1986, Image Vis. Comput..

[2]  Rolf Mahnken,et al.  Identification of Material Parameters for Constitutive Equations , 2004 .

[3]  François Hild,et al.  Identification de modèles de comportement de matériaux solides : utilisation d'essais et de calculs , 2002 .

[4]  Stéphane Roux,et al.  Identification de lois d'endommagement anisotrope à partir de la corrélation d'images numériques = Identification of anisotropic damage laws using digital image correlation , 2009 .

[5]  Stéphane Roux,et al.  Identification of damage fields using kinematic measurements , 2002 .

[6]  Pierre Ladevèze,et al.  Strict upper error bounds on computed outputs of interest in computational structural mechanics , 2008 .

[7]  Eric Florentin,et al.  A simple estimator for stress errors dedicated to large elastic finite element simulations , 2011 .

[8]  Pierre Feissel,et al.  Identification strategy in the presence of corrupted measurements , 2005 .

[9]  M. Bonnet,et al.  Overview of Identification Methods of Mechanical Parameters Based on Full-field Measurements , 2008 .

[10]  W. F. Ranson,et al.  Determination of displacements using an improved digital correlation method , 1983, Image Vis. Comput..

[11]  Stéphane Roux,et al.  Identification of a Damage Law by Using Full-field Displacement Measurements , 2005, physics/0511121.

[12]  Eric Florentin,et al.  The global equilibrium method and its hybrid implementation for identifying heterogeneous elastic material parameters , 2011 .

[13]  Nicolas Moës,et al.  A new a posteriori error estimation for nonlinear time-dependent finite element analysis , 1998 .

[14]  Roland Becker,et al.  A posteriori error estimation for finite element discretization of parameter identification problems , 2004, Numerische Mathematik.

[15]  Eric Florentin,et al.  Identification of the parameters of an elastic material model using the constitutive equation gap method , 2010 .

[16]  Pierre Ladevèze,et al.  Construction of a micromechanics-based intralaminar mesomodel, and illustrations in ABAQUS/Standard , 2008 .

[17]  Bertrand Wattrisse,et al.  Elastoplastic Behavior Identification for Heterogeneous Loadings and Materials , 2008 .

[18]  Michel Grédiac,et al.  L'identification des propriétés mécaniques de matériaux avec la méthode des champs virtuels, une alternative au recalage par éléments finis , 2002 .

[19]  Stéphane Avril,et al.  3D Heterogeneous Stiffness Reconstruction Using MRI and the Virtual Fields Method , 2008 .

[20]  Pedro Díez,et al.  Bounds of functional outputs for parabolic problems. Part I: Exact bounds of the discontinuous Galerkin time discretization , 2008 .

[21]  Masaru Ikehata,et al.  Inversion formulas for the linearized problem for an inverse boundary value problem in elastic prospection , 1990 .

[22]  Pierre Ladevèze,et al.  Local error estimator for stresses in 3D structural analysis , 2001 .

[23]  Pierre Ladevèze,et al.  A new non-intrusive technique for the construction of admissible stress fields in model verification , 2010 .

[24]  J. Lemaitre,et al.  Mécanique des matériaux solides , 1996 .

[25]  L. Gallimard,et al.  Adaptive meshing for local quality of FE stresses , 2005 .

[26]  François Hild,et al.  Identification of elastic parameters by displacement field measurement , 2002 .

[27]  R. Clough,et al.  Finite element applications in the characterization of elastic solids , 1971 .

[28]  P. Ladevèze,et al.  Pont entre les « micro » et « méso » mécaniques des composites stratifiés , 2003 .

[29]  Michael R Wisnom,et al.  Full-field assessment of the damage process of laminated composite open-hole tensile specimens. Part II: experimental results , 2007 .

[30]  Michael R Wisnom,et al.  Identification of the local stiffness reduction of a damaged composite plate using the virtual fields method , 2007 .

[31]  Fabrice Pierron,et al.  Applying the Virtual Fields Method to the identification of elasto-plastic constitutive parameters , 2006 .