Non-trivial solutions and their stability in a two-degree-of-freedom Mathieu–Duffing system

[1]  I. Siddiqi,et al.  Broadband squeezed microwaves and amplification with a Josephson travelling-wave parametric amplifier , 2022, Nature Physics.

[2]  P. Hagedorn,et al.  Broadband parametric amplification for micro-ring gyroscopes , 2021, Sensors and Actuators A: Physical.

[3]  Vimal Singh,et al.  Perturbation methods , 1991 .

[4]  J. Collado,et al.  Enhanced vibration decay in high-Q resonators by confined of parametric excitation , 2020 .

[5]  Lukas Lamprecht,et al.  Parametric amplification of broadband vibrational energy harvesters for energy-autonomous sensors enabled by field-induced striction , 2020, Mechanical Systems and Signal Processing.

[6]  E. Rustighi,et al.  Parametrically Excited Nonlinear Two-Degree-of-Freedom Electromechanical Systems , 2019, Journal of Physics: Conference Series.

[7]  P. Hagedorn,et al.  Global stability effects of parametric excitation , 2019, Journal of Sound and Vibration.

[8]  P. Hagedorn,et al.  Asynchronous parametric excitation, total instability and its occurrence in engineering structures , 2018, Journal of Sound and Vibration.

[9]  Ivana Kovacic,et al.  Mathieu's Equation and Its Generalizations: Overview of Stability Charts and Their Features , 2018 .

[10]  Steven W. Shaw,et al.  Nonlinearity and parametric pumping in sensors: Opportunities and limitations , 2017, 2017 IEEE SENSORS.

[11]  M. Daqaq,et al.  Exploiting the principle parametric resonance of an electric oscillator for vibratory energy harvesting , 2017 .

[12]  E. Weig,et al.  Parametric Oscillation, Frequency Mixing, and Injection Locking of Strongly Coupled Nanomechanical Resonator Modes. , 2016, Physical review letters.

[13]  Alberto Corigliano,et al.  Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope , 2015, Scientific Reports.

[14]  Thomas Faust,et al.  Coherent control of a classical nanomechanical two-level system , 2012, Nature Physics.

[15]  Fadi Dohnal,et al.  Experimental studies on damping by parametric excitation using electromagnets , 2012 .

[16]  Zhongxu Hu,et al.  A parametrically amplified MEMS rate gyroscope , 2011 .

[17]  I. Kovacic,et al.  The Duffing Equation: Nonlinear Oscillators and their Behaviour , 2011 .

[18]  Steven W. Shaw,et al.  Nonlinear Dynamics and Its Applications in Micro- and Nanoresonators , 2010 .

[19]  Kimberly L. Turner,et al.  Robust micro-rate sensor actuated by parametric resonance , 2009 .

[20]  Steven W. Shaw,et al.  Mechanical Domain Parametric Amplification , 2008 .

[21]  F. Dohnal,et al.  General parametric stiffness excitation – anti-resonance frequency and symmetry , 2008 .

[22]  Fadi Dohnal,et al.  Suppressing self-excited vibrations by synchronous and time-periodic stiffness and damping variation , 2007 .

[23]  F. Dohnal Vibration suppression of self‐excited oscillations by parametric inertia excitation , 2005 .

[24]  Ali H. Nayfeh,et al.  Resolving Controversies in the Application of the Method of Multiple Scales and the Generalized Method of Averaging , 2005 .

[25]  Jerzy Warminski,et al.  Regular and Chaotic Vibrations of a Parametrically and Self-Excited System Under Internal Resonance Condition , 2005 .

[26]  S. Silvestri,et al.  Ultrafast optical parametric amplifiers , 2003 .

[27]  D. Rugar,et al.  Mechanical parametric amplification and thermomechanical noise squeezing. , 1991, Physical review letters.

[28]  A. H. Nayfeh,et al.  The response of two-degree-of-freedom systems with quadratic non-linearities to a combination parametric resonance , 1986 .

[29]  P. Hagedorn Kombinationsresonanz und Instabilitätsbereiche zweiter Art bei parametererregten Schwingungen mit nichtlinearer Dämpfung , 1969 .

[30]  E. Mettler Allgemeine Theorie der Stabilität erzwungener Schwingungen elastischer Körper , 1949 .

[31]  A. Karev Asynchronous Parametric Excitation in Dynamical Systems , 2021 .

[32]  I. Kovacic Nonlinear Oscillations , 2020 .

[33]  Horst Ecker,et al.  Parametric Excitation in a Two Degree of Freedom MEMS System , 2013 .

[34]  A. H. Nayfeh,et al.  Parametrically Excited Nonlinear Two-Degree-of -Freedom Systems with Repeated Natural Frequencies , 1995 .

[35]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[36]  L. Perko Differential Equations and Dynamical Systems , 1991 .

[37]  H. Schmieg KOMBINATIONSRESONANZ BEI SYSTEMEN MIT ALLGEMEINER HARMONISCHER ERREGERMATRIX. , 1978 .