How to encode a tree
暂无分享,去创建一个
[1] C. W. Borchardt. Ueber eine der Interpolation entsprechende Darstellung der Eliminations-Resultante. , 1860 .
[2] W. T. Tutte. The dissection of equilateral triangles into equilateral triangles , 1948, Mathematical Proceedings of the Cambridge Philosophical Society.
[3] Donald E. Knuth,et al. Oriented subtrees of an arc digraph , 1967 .
[4] James B. Orlin,et al. Line-digraphs, arborescences, and theorems of tutte and knuth , 1978, J. Comb. Theory, Ser. B.
[5] A. Joyal. Une théorie combinatoire des séries formelles , 1981 .
[6] S. Milne,et al. Method for constructing bijections for classical partition identities. , 1981, Proceedings of the National Academy of Sciences of the United States of America.
[7] S. Chaiken. A Combinatorial Proof of the All Minors Matrix Tree Theorem , 1982 .
[8] Doron Zeilberger,et al. A combinatorial approach to matrix algebra , 1985, Discret. Math..
[9] Ömer Egecioglu,et al. Bijections for Cayley trees, spanning trees, and their q-analogues , 1986, J. Comb. Theory, Ser. A.
[10] D. White,et al. Constructive combinatorics , 1986 .
[11] A. Cayley. A theorem on trees , 2009 .