Colon Flattening Using Heat Diffusion Riemannian Metric

We propose a new colon flattening algorithm that is efficient, shape-preserving, and robust to topological noise. Unlike previous approaches, which require a mandatory topological denoising to remove fake handles, our algorithm directly flattens the colon surface without any denoising. In our method, we replace the original Euclidean metric of the colon surface with a heat diffusion metric that is insensitive to topological noise. Using this heat diffusion metric, we then solve a Laplacian equation followed by an integration step to compute the final flattening. We demonstrate that our method is shape-preserving and the shape of the polyps are well preserved. The flattened colon also provides an efficient way to enhance the navigation and inspection in virtual colonoscopy. We further show how the existing colon registration pipeline is made more robust by using our colon flattening. We have tested our method on several colon wall surfaces and the experimental results demonstrate the robustness and the efficiency of our method.

[1]  Shi-Min Hu,et al.  Optimal Surface Parameterization Using Inverse Curvature Map , 2008, IEEE Transactions on Visualization and Computer Graphics.

[2]  Jian Sun,et al.  Computing geometry-aware handle and tunnel loops in 3D models , 2008, SIGGRAPH 2008.

[3]  Ge Wang,et al.  GI tract unraveling with curved cross sections , 1998, IEEE Transactions on Medical Imaging.

[4]  Michael Taylor,et al.  Partial Differential Equations I: Basic Theory , 1996 .

[5]  Lei Zhu,et al.  Flattening maps for the visualization of multibranched vessels , 2005, IEEE Transactions on Medical Imaging.

[6]  A. Bronstein,et al.  Shape Google : a computer vision approach to invariant shape retrieval , 2009 .

[7]  Guillermo Sapiro,et al.  Three-dimensional point cloud recognition via distributions of geometric distances , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[8]  Xianfeng Gu,et al.  Discrete Surface Ricci Flow: Theory and Applications , 2007, IMA Conference on the Mathematics of Surfaces.

[9]  Dirk Bartz,et al.  Virtual voyage: interactive navigation in the human colon , 1997, SIGGRAPH.

[10]  Shiing-Shen Chern,et al.  An elementary proof of the existence of isothermal parameters on a surface , 1955 .

[11]  Shi-Min Hu,et al.  Topology Repair of Solid Models Using Skeletons , 2007, IEEE Transactions on Visualization and Computer Graphics.

[12]  B. Shin,et al.  Surface Reconstruction for Efficient Colon Unfolding , 2006, GMP.

[13]  Haibin Ling,et al.  Diffusion Distance for Histogram Comparison , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[14]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[15]  Xianfeng Gu,et al.  Discrete Surface Ricci Flow , 2008, IEEE Transactions on Visualization and Computer Graphics.

[16]  Leonidas J. Guibas,et al.  Shape Google: a computer vision approach to isometry invariant shape retrieval , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[17]  Eduard Gröller,et al.  Nonlinear virtual colon unfolding , 2001, Proceedings Visualization, 2001. VIS '01..

[18]  Guillermo Sapiro,et al.  A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.

[19]  Ge Wang,et al.  Colon unraveling based on electrical field: recent progress and further work , 1999, Medical Imaging.

[20]  Shi-Min Hu,et al.  Editing the topology of 3D models by sketching , 2007, ACM Trans. Graph..

[21]  Ron Kikinis,et al.  Nondistorting flattening maps and the 3-D visualization of colon CT images , 2000, IEEE Transactions on Medical Imaging.

[22]  Pierre Alliez,et al.  Designing quadrangulations with discrete harmonic forms , 2006, SGP '06.

[23]  A. Jemal,et al.  Worldwide Variations in Colorectal Cancer , 2009, CA: a cancer journal for clinicians.

[24]  Ge Wang,et al.  GI tract unraveling by spiral CT , 1995, Medical Imaging.

[25]  Facundo Mémoli,et al.  Spectral Gromov-Wasserstein distances for shape matching , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[26]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[27]  Feng Qiu,et al.  A Pipeline for Computer Aided Polyp Detection , 2006, IEEE Transactions on Visualization and Computer Graphics.

[28]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[29]  David Cohen-Steiner,et al.  Computing geometry-aware handle and tunnel loops in 3D models , 2008, ACM Trans. Graph..

[30]  A. Dachman,et al.  CT colonography: the next colon screening examination? , 2000, Radiology.

[31]  Martin Styner,et al.  Framework for the Statistical Shape Analysis of Brain Structures using SPHARM-PDM. , 2006, The insight journal.

[32]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[33]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[34]  László G. Nyúl,et al.  Virtual dissection of the colon: technique and first experiments with artificial and cadaveric phantoms , 2002, SPIE Medical Imaging.

[35]  Steven W. Zucker,et al.  Diffusion Maps and Geometric Harmonics for Automatic Target Recognition (ATR). Volume 2. Appendices , 2007 .

[36]  D S Paik,et al.  Visualization modes for CT colonography using cylindrical and planar map projections. , 2000, Journal of computer assisted tomography.

[37]  Shing-Tung Yau,et al.  Slit Map: Conformal Parameterization for Multiply Connected Surfaces , 2008, GMP.

[38]  Karthik Ramani,et al.  Using diffusion distances for flexible molecular shape comparison , 2010, BMC Bioinformatics.

[39]  Paul M. Thompson,et al.  Conformal Slit Mapping and Its Applications to Brain Surface Parameterization , 2008, MICCAI.

[40]  Zoë J. Wood,et al.  Topological Noise Removal , 2001, Graphics Interface.

[41]  Eduard Gröller,et al.  Virtual Colon Flattening , 2001, VisSym.

[42]  P. Schröder,et al.  Conformal equivalence of triangle meshes , 2008, SIGGRAPH 2008.

[43]  Patrick M. Knupp,et al.  Matrix Norms & The Condition Number: A General Framework to Improve Mesh Quality Via Node-Movement , 1999, IMR.

[44]  Wei Zeng,et al.  Supine and Prone Colon Registration Using Quasi-Conformal Mapping , 2010, IEEE Transactions on Visualization and Computer Graphics.

[45]  Feng Qiu,et al.  Conformal virtual colon flattening , 2006, SPM '06.

[46]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.