Sampled-data output regulation of linear system based on input delay approach

In this paper, a output regulation problem with time-varying sampling interval is investigated. An input delay approach is used to convert a sampled data feedback system into a continuous time-delay systems. Two sufficient conditions for the output regulation problem are presented in terms of LMIs. Finally, a numerical simulation example is given to demonstrate the effectiveness of the developed analytic results.

[1]  Ji Xiang,et al.  Synchronized Output Regulation of Linear Networked Systems , 2009, IEEE Transactions on Automatic Control.

[2]  Emilia Fridman,et al.  A descriptor system approach to H∞ control of linear time-delay systems , 2002, IEEE Trans. Autom. Control..

[3]  Zongli Lin,et al.  Output regulation for linear discrete-time systems subject to input saturation , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[4]  B. Francis The linear multivariable regulator problem , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[5]  S. Urikura,et al.  Ripple-free deadbeat control for sampled-data systems , 1987 .

[6]  A. Emami-Naeini,et al.  Design of ripple-free multivariable robust servomechanisms , 1984, The 23rd IEEE Conference on Decision and Control.

[7]  U. Shaked,et al.  Stability and guaranteed cost control of uncertain discrete delay systems , 2005 .

[8]  K. Ichikawa Finite-settling-time control of continuous-time plants , 1987 .

[9]  D. Lawrence,et al.  Output regulation for linear systems with sampled measurements , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[10]  Zhou Luan-jie,et al.  Delay-Dependent Robust Stabilization of Uncertain State-Delayed Systems , 2004 .

[11]  P. Kabamba Control of Linear Systems Using Generalized Sampled-Data Hold Functions , 1987, 1987 American Control Conference.

[12]  Emilia Fridman,et al.  Robust sampled-data stabilization of linear systems: an input delay approach , 2004, Autom..

[13]  Rathinasamy Sakthivel,et al.  Robust sampled-data H∞ control for mechanical systems , 2015, Complex..

[14]  E. Fridman Stability of linear descriptor systems with delay: a Lyapunov-based approach , 2002 .

[15]  O. A. Sebakhy,et al.  State-space design of ripple-free deadbeat multivariable systems , 1989 .

[16]  Emilia Fridman,et al.  An improved stabilization method for linear time-delay systems , 2002, IEEE Trans. Autom. Control..

[17]  Laura Menini,et al.  Ripple-free robust output regulation and tracking for multirate sampled-data control , 2002 .

[18]  Christopher I. Byrnes,et al.  Structurally stable output regulation of nonlinear systems , 1997, Autom..

[19]  W. Wonham,et al.  The internal model principle for linear multivariable regulators , 1975 .

[20]  Emilia Fridman,et al.  New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems , 2001, Syst. Control. Lett..

[21]  Gang Feng,et al.  Output regulation of discrete-time piecewise-linear systems with application to controlling chaos , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[22]  Jie Huang,et al.  Nonlinear Output Regulation: Theory and Applications , 2004 .

[23]  G. Franklin,et al.  Design of ripple-free multivariable robust servomechanisms , 1984, IEEE Conference on Decision and Control.

[24]  Jie Huang,et al.  Remarks on “Synchronized Output Regulation of Linear Networked Systems” , 2011, IEEE Transactions on Automatic Control.

[25]  Yutaka Yamamoto,et al.  A function space approach to sampled data control systems and tracking problems , 1994, IEEE Trans. Autom. Control..