Dynamic sublimation pressure and the catastrophic breakup of Comet ISON

Abstract Previously proposed mechanisms have difficulty explaining the disruption of Comet C/2012 S1 (ISON) as it approached the Sun. We describe a novel cometary disruption mechanism whereby comet nuclei fragment and disperse through dynamic sublimation pressure, which induces differential stresses within the interior of the nucleus. When these differential stresses exceed its material strength, the nucleus breaks into fragments. We model the sublimation process thermodynamically and propose that it is responsible for the disruption of Comet ISON. We estimate the bulk unconfined crushing strength of Comet ISON’s nucleus and the resulting fragments to be 0.5 Pa and 1–9 Pa, respectively, assuming typical Jupiter Family Comet (JFC) albedos. However, if Comet ISON has an albedo similar to Pluto, this strength estimate drops to 0.2 Pa for the intact nucleus and 0.6–4 Pa for its fragments. Regardless of assumed albedo, these are similar to previous strength estimates of JFCs. This suggests that, if Comet ISON is representative of dynamically new comets, then low bulk strength is a primordial property of some comet nuclei, and not due to thermal processing during migration into the Jupiter Family.

[1]  G. Fazio,et al.  The Nucleus of Comet Hyakutake (C/1996 B2) , 1999 .

[2]  Alan Fitzsimmons,et al.  Photometry of cometary nuclei: Rotation rates, colours and a comparison with Kuiper Belt Objects , 2006 .

[3]  W. Brace Dependence of Fracture Strength of Rocks on Grain Size , 1961 .

[4]  Ludmilla Kolokolova,et al.  Characterizing the Dust Coma of Comet C/2012 S1 (ISON) at 4.15 AU from the Sun , 2013 .

[5]  Z. Sekanina Sublimation rates of carbon monoxide and carbon dioxide from comets at large heliocentric distances , 1992 .

[6]  L. Jorda,et al.  Spitzer Space Telescope observations of the nucleus of comet 67P/Churyumov-Gerasimenko , 2008 .

[7]  K. Klaasen,et al.  Thermal Inertia and Surface Roughness of Comet 9P/Tempel 1 Derived from Recalibrated Deep Impact NIR Spectroscopy , 2010 .

[8]  Erik Asphaug,et al.  Structure of Comet Shoemaker-Levy 9 Inferred from the Physics of Tidal Breakup , 1996 .

[9]  U. Fink,et al.  The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta , 2015, Science.

[10]  P. Feldman Ultraviolet spectroscopy of comets , 1981 .

[11]  W. Grundy,et al.  Amorphous and Crystalline H 2 O-Ice , 2013 .

[12]  R. Roy,et al.  Photometric Survey of Binary Near-Earth Asteroids , 2006 .

[13]  Pavel Spurný,et al.  The trajectory, structure and origin of the Chelyabinsk asteroidal impactor , 2013, Nature.

[14]  Fred L. Whipple,et al.  A comet model. I. The acceleration of Comet Encke , 1950 .

[15]  Simon F. Green,et al.  Return to Comet Tempel 1: Overview of Stardust-NExT results , 2013 .

[16]  S. Debei,et al.  The morphological diversity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[17]  J. Castillo‐Rogez,et al.  The science of solar system ices , 2013 .

[18]  D. K. Yeomans,et al.  Orbital motion, nucleus precession, and splitting of periodic Comet Brooks 2 , 1985 .

[19]  N. Samarasinha A model for the breakup of comet LINEAR (C/1999 S4) , 2001 .

[20]  Matthew M. Knight,et al.  OBSERVATIONS OF COMET ISON (C/2012 S1) FROM LOWELL OBSERVATORY , 2014, 1410.0684.

[21]  J. Blum,et al.  Outgassing of icy bodies in the Solar System – II: Heat transport in dry, porous surface dust layers , 2011, 1111.0535.

[22]  J. Crovisier,et al.  The composition of cometary volatiles , 2004 .

[23]  J. Sunshine,et al.  Asymmetries in the distribution of H2O and CO2 in the inner coma of Comet 9P/Tempel 1 as observed by Deep Impact , 2007 .

[24]  J. Blum,et al.  Outgassing of icy bodies in the Solar System – I. The sublimation of hexagonal water ice through dust layers , 2011, 1101.2518.

[25]  Z. Sekanina Erosion Model for the Sungrazing Comets Observed with the Solar and Heliospheric Observatory , 2003 .

[26]  L. J. Porter,et al.  Mass loss, destruction and detection of Sun-grazing and -impacting cometary nuclei , 2011, 1107.1857.

[27]  M. Belton,et al.  The temperature, thermal inertia, roughness and color of the nuclei of Comets 103P/Hartley 2 and 9P/Tempel 1 , 2013 .

[28]  J.-L. Bertaux,et al.  UNUSUAL WATER PRODUCTION ACTIVITY OF COMET C/2012 S1 (ISON): OUTBURSTS AND CONTINUOUS FRAGMENTATION , 2014 .

[29]  M. Drahus Rotational Disruption of Comets with Parabolic Orbits , 2014 .

[30]  N. Price Fault and Joint Development in Brittle and Semi-brittle Rock , 1966 .

[31]  W. Wagner,et al.  Sublimation pressure and sublimation enthalpy of H2O ice Ih between 0 and 273.16 K , 2007 .

[32]  M. Belton,et al.  Rotationally Resolved 8-35 Micron Spitzer Space Telescope Observations of the Nucleus of Comet 9P/Tempel 1 , 2005 .

[33]  H. Melosh,et al.  An examination of the Deep Impact collision site on Comet Tempel 1 via Stardust-NExT: Placing further constraints on cometary surface properties , 2013 .

[34]  Harold F. Levison,et al.  Dynamical evolution of ecliptic comets , 2004 .

[35]  Karen J. Meech,et al.  Photometric properties of the nucleus of Comet 103P/Hartley 2 , 2013 .

[36]  H. Melosh Planetary Surface Processes: Slopes and mass movement , 2011 .

[37]  Orlando B. Andersland,et al.  The Effect of Confining Pressure on the Mechanical Properties of Sand–Ice Materials , 1973 .

[38]  L. Jorda,et al.  Spitzer Space Telescope observations of the nucleus of comet 67P/Churyumov-Gerasimenko , 2008 .

[39]  T. Encrenaz,et al.  Subsurface properties and early activity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[40]  Philippe Lamy,et al.  HUBBLE SPACE TELESCOPE OBSERVATIONS OF THE NUCLEUS OF COMET C/2012 S1 (ISON) , 2014 .

[41]  A. Bar-Nun,et al.  Gas Trapping in Ice and Its Release upon Warming , 2013 .

[42]  Nalin Samarasinha,et al.  RELATING CHANGES IN COMETARY ROTATION TO ACTIVITY: CURRENT STATUS AND APPLICATIONS TO COMET C/2012 S1 (ISON) , 2013 .

[43]  H. U. Keller,et al.  A note on the survival of the sungrazing comet C/2011 W3 (Lovejoy) within the Roche limit , 2012, 1203.1808.

[44]  Matthew M. Knight,et al.  WILL COMET ISON (C/2012 S1) SURVIVE PERIHELION? , 2013, 1309.2288.

[45]  Matthew M. Knight,et al.  PRELIMINARY ANALYSIS OF SOHO/STEREO OBSERVATIONS OF SUNGRAZING COMET ISON (C/2012 S1) AROUND PERIHELION , 2014, 1401.7028.

[46]  Brian Lawn,et al.  Fracture of brittle solids: Preface , 1993 .

[47]  Daniel J. Scheeres,et al.  The strength of regolith and rubble pile asteroids , 2013, 1306.1622.

[48]  B. Marsden Comets and Nongravitational Forces. III , 1968 .

[49]  P. Swings,et al.  Hydrates de gaz dans les noyaux cométaires et les grains interstellaires , 1952 .

[50]  B. Mysen,et al.  Evaporation of olivine: Low pressure phase relations of the olivine system and its implication for the origin of chondritic components in the solar nebula , 1994 .

[51]  Irving Langmuir,et al.  The Vapor Pressure of Metallic Tungsten , 1913 .

[52]  J. Richardson,et al.  Investigating the combined effects of shape, density, and rotation on small body surface slopes and erosion rates , 2014 .

[53]  Jan T. Kleyna,et al.  The Size and Fragmentation of the Nucleus of Comet C/2012 S1 (ISON) , 2015 .

[54]  Michael F. A'Hearn,et al.  Vaporization of comet nuclei: Light curves and life times , 1979 .

[55]  M. Belton,et al.  Photometry of the nucleus of Comet 9P/Tempel 1 from Stardust-NExT flyby and the implications , 2013 .