Design and experimental verification of a nonlinear catalytic reactor estimator

Abstract A procedure for the implementation of a nonlinear extended Kalman filter to infer the outlet concentration of a catalytic reactor from temperature measurements is developed. The role of the reactor model in determining the reliability of the conversion estimates is discussed in detail. The estimator performance is checked by comparison with the dynamic experimental behavior of a catalytic reactor where the oxidation of CO to CO 2 is carried out on a Pt—alumina-supported catalyst. The application of the developed estimation procedure to reactors of interest in applications is discussed.

[1]  Luis F. Razon,et al.  Intrinsically Unstable Behavior during the Oxidation of Carbon Monoxide on Platinum , 1986 .

[2]  Bengt Lennartson Combining Infrequent and Indirect Measurements by Estimation and Control , 1989 .

[3]  D. Bonvin,et al.  Application of estimation techniques to batch reactors—III. Modelling refinements which improve the quality of state and parameter estimation , 1990 .

[4]  Andrew Klein,et al.  An experimental study of adaptive Kalman filtering in emulsion copolymerization , 1991 .

[5]  W. Morton,et al.  Tarnsient studies of carbon monoxide oxidation over platinum catalyst , 1982 .

[6]  Samuel P. Marin,et al.  Surface chemistry models of carbon monoxide oxidation on supported platinum catalysts , 1980 .

[7]  Andrew Klein,et al.  Dynamic modeling and state estimation for an emulsion copolymerization reactor , 1989 .

[8]  Massimo Morbidelli,et al.  Two‐step catalytic reactions: Pitfalls in the prediction of transient behavior by global kinetics , 1984 .

[9]  Mordechay Herskowitz,et al.  CO oxidation on Pt supported catalysts. Kinetics and multiple steady states , 1983 .

[10]  Michael R. Prairie,et al.  Experimental and modelling investigations of steady-state and dynamic characteristics of ethylene hydrogenation on Pt/Al2O3 , 1987 .

[11]  W. Fred Ramirez,et al.  Real‐time time‐optimal control of a stirred‐tank reactor using Kalman Filtering for state estimation , 1975 .

[12]  Jean-Marie Flaus,et al.  COMPARISON OF ESTIMATION METHODS FOR BIOTECHNOLOGICAL PROCESSES , 1988 .

[13]  D. Bonvin,et al.  Application of estimation techniques to batch reactors—II. Experimental studies in state and parameter estimation , 1989 .

[14]  Klavs F. Jensen,et al.  Estimation of the molecular weight distribution in batch polymerization , 1988 .

[15]  P. Henrik Wallman Reconstruction of Unmeasured Quantities for Nonlinear Dynamic Processes , 1979 .

[16]  Hanns Hofmann,et al.  Dynamic modelling of heterogeneous catalytic reactions—I. Theoretical considerations , 1987 .

[17]  Dominique Bonvin,et al.  Application of estimation techniques to batch reactors—I. Modelling thermal effects , 1989 .

[18]  Wei-Kang Yuan,et al.  Application of adaptive estimation in microbial fermentation processes , 1988 .

[19]  Gregory Stephanopoulos,et al.  Adaptive estimation of bioreactors: monitoring plasmid instability , 1989 .

[20]  D. T. Lynch,et al.  CO oxidation on Pt: model discrimination using experimental bifurcation behavior , 1987 .

[21]  Jeffrey C. Kantor,et al.  Nonlinear adaptive observation of an exothermic stirred-tank reactor , 1991 .

[22]  R. H. Luecke,et al.  Process control applications of an extended Kalman filter algorithm , 1991 .

[23]  Denis Dochain,et al.  Online Estimation of Microbial Specific Growth-rates - An Illustrative Case-study , 1988 .

[24]  Jeffrey C. Kantor,et al.  A finite dimensional nonlinear observer for an exothermic stirred-tank reactor , 1989 .

[25]  George Stephanopoulos,et al.  Chemical Process Control: An Introduction to Theory and Practice , 1983 .

[26]  J. Macgregor,et al.  On‐line inference of polymer properties in an industrial polyethylene reactor , 1991 .