Distance estimates for dependent thinnings of point processes with densities

In [Schuhmacher, Electron. J. Probab. 10 (2005), 165--201] estimates of the Barbour-Brown distance $d_2$ between the distribution of a thinned point process and the distribution of a Poisson process were derived by combining discretization with a result based on Stein's method. In the present article we concentrate on point processes that have a density with respect to a Poisson process, for which we can apply a corresponding result directly without the detour of discretization. This enables us to obtain better and more natural bounds in the $d_2$-metric, and for the first time also bounds in the stronger total variation metric. We give applications for thinning by covering with an independent Boolean model and "Matern type I" thinning of fairly general point processes. These applications give new insight into the respective models, and either generalize or improve earlier results.

[1]  Wolfgang Weil,et al.  Spatial Point Processes and their Applications , 2007 .

[2]  Aihua Xia,et al.  On metrics in point process approximation , 1995 .

[3]  Hans Zessin,et al.  Integral and Differential Characterizations of the GIBBS Process , 1979 .

[4]  Dominic Schuhmacher,et al.  Distance Estimates for Poisson Process Approximations of Dependent Thinnings , 2005 .

[5]  Adrian Baddeley,et al.  Spatial Point Processes and their Applications , 2007 .

[6]  Scott A. Sisson,et al.  Statistical Inference and Simulation for Spatial Point Processes , 2005 .

[7]  Louis H. Y. Chen,et al.  An Introduction to Stein's Method , 2005 .

[8]  Stein’s method, Palm theory and Poisson process approximation , 2004, math/0410169.

[9]  A. Barbour,et al.  Poisson Approximation , 1992 .

[10]  T. C. Brown,et al.  Stein's method and point process approximation , 1992 .

[11]  J. Neveu,et al.  Mathematical foundations of the calculus of probability , 1965 .

[12]  M. Rudemo,et al.  Random patterns of nonoverlapping convex grains , 2002, Advances in Applied Probability.

[13]  J. Mecke,et al.  Eine charakteristische Eigenschaft der doppelt stochastischen Poissonschen Prozesse , 1968 .

[14]  A. Cohen On random fields , 1967 .

[15]  J. Møller,et al.  Statistical Inference and Simulation for Spatial Point Processes , 2003 .

[16]  Timothy C. Brown,et al.  Position dependent and stochastic thinning of point processes , 1979 .

[17]  Aihua Xia,et al.  Stein’s method and Poisson process approximation , 2003 .

[18]  Dominic Schuhmacher Estimation of distances between point process distibutions , 2005 .

[19]  J. Mecke,et al.  Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen , 1967 .

[20]  Olav Kallenberg,et al.  Limits of compound and thinned point processes , 1975, Journal of Applied Probability.

[21]  Nguyen Xuan Xanh,et al.  Integral and differential characterizations of the Gibbs process , 1977, Advances in Applied Probability.

[22]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[23]  Rolf-Dieter Reiss,et al.  A Course on Point Processes , 1992 .

[24]  Peter J. Diggle,et al.  Statistical analysis of spatial point patterns , 1983 .

[25]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[26]  C. Stein A bound for the error in the normal approximation to the distribution of a sum of dependent random variables , 1972 .

[27]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[28]  P. Hall Distribution of size, structure and number of vacant regions in a high-intensity mosaic , 1985 .