Some properties of surfaces of finite III-type

In this paper, we firstly investigate some relations regarding the first and the second Laplace operators corresponding to the third fundamental form III of a surface in the Euclidean space E. Besides, we introduce the finite Chen type surfaces of revolution with nonvanishing Gauss curvature with respect to the third fundamental form. We present a special case of this family of surfaces of revolution in E, namely, surfaces of revolution with R is constant, where R denotes the sum of the radii of the principal curvature of a surface. Key-Words: Surfaces in the Euclidean 3-space, Surfaces of finite Chen-type, Laplace operator, Surfaces of revolution.

[1]  Mohammad Al Rawajbeh,et al.  Tubes of coordinate finite type Gauss map in the Euclidean 3-space. , 2019, 1904.12339.

[2]  Hemen Dutta,et al.  Fractional Gauss hypergeometric differential equation , 2019, Journal of Interdisciplinary Mathematics.

[3]  Hassan Al-Zoubi,et al.  Surfaces of finite type with respect to the third fundamental form , 2019, 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT).

[4]  P. Alam,et al.  H , 1887, High Explosives, Propellants, Pyrotechnics.

[5]  Hassan Al-Zoubi Anchor rings of finite type Gauss map in the Euclidean 3-space , 2019, 1902.09397.

[6]  Hassan Al-Zoubi Surfaces of Finite III-type , 2021, International Journal of Mathematical Models and Methods in Applied Sciences.

[7]  R. Khalil,et al.  On fractional vector analysis , 2020 .

[8]  M. Elbes,et al.  Sufficient Conditions and Bounding Properties for Control Functions Using Bernstein Expansion , 2020, Applied Mathematics & Information Sciences.

[9]  K. Jaber,et al.  Tubes of finite Chen-type , 2019, 1902.08247.

[10]  Tareq Hamadneh,et al.  Quadric surfaces of coordinate finite type Gauss map , 2020, 2006.04529.

[11]  Linear Optimization of Polynomial Rational Functions: Applications for Positivity Analysis , 2020 .

[12]  Chul Woo Lee,et al.  ON THE GAUSS MAP OF SURFACES OF REVOLUTION WITHOUT PARABOLIC POINTS , 2009 .

[13]  M. Awadallah,et al.  Translation surfaces of coordinate finite type , 2017, 1902.03131.

[14]  Hassan Al-Zoubi Tubes of Finite II-Type in the Euclidean 3-Space , 2018 .

[15]  Hassan Al-Zoubi,et al.  Ruled Surfaces of Finite II-Type , 2019 .

[16]  Hassan Al-Zoubi,et al.  On surfaces of finite Chen $III$-type , 2019, Bulletin of the Belgian Mathematical Society - Simon Stevin.

[17]  M. A. Hammad,et al.  Numerical methods for finding periodic solutions of ordinary differential equations with strong nonlinearity , 2021, Journal of Mathematical and Computational Science.

[18]  Tareq Hamadneh,et al.  Tubes in the Euclidean 3-space with coordinate finite type Gauss map , 2021, 2021 International Conference on Information Technology (ICIT).

[19]  P. Verheyen,et al.  Total mean curvature and submanifolds of finite type , 1985 .

[20]  P. Alam ‘W’ , 2021, Composites Engineering.

[21]  Stylianos Stamatakis Ruled Surfaces of Finite Chen-Type , 2018 .

[22]  Hassan Al-Zoubi,et al.  Surfaces of revolution satisfying 4 III x = Ax , 2010 .

[23]  Soon Meen Choi On the Gauss map of surfaces of revolution in a 3-dimensional Minkowski space , 1995 .

[24]  S. Alomari,et al.  Fast Computation of Polynomial Data Points Over Simplicial Face Values , 2020, J. Inf. Knowl. Manag..