Nanofabrication of plasmonic structures.

This review focuses on nanofabrication tools, based on soft lithography, which can generate a wide range of noble-metal structures with exceptional optical properties. These techniques offer a scalable and practical approach for producing arrays of complementary plasmonic structures (nanoholes and nanoparticles) and, in addition, expand the possible architectures of plasmonic materials because the metal building blocks can be organized over multiple length scales. We describe the preparation and characterization of five different systems: subwavelength nanohole arrays, finite arrays of nanoholes, microscale arrays of nanoholes, multiscale arrays of nanoparticles, and pyramidal particles. We also discuss how the surface plasmon resonances of these structures can be tuned across visible and near-infrared wavelengths by varying different parameters. Applications and future prospects of these nanostructured metals are addressed.

[1]  M. Wegener,et al.  Second-Harmonic Generation from Magnetic Metamaterials , 2006, Science.

[2]  R. G. Freeman,et al.  Submicrometer metallic barcodes. , 2001, Science.

[3]  Teri W. Odom,et al.  Mesoscale metallic pyramids with nanoscale tips. , 2005, Nano letters.

[4]  Ian A. Tonks,et al.  Fabrication of Free-Standing Metallic Pyramidal Shells , 2004 .

[5]  Jennifer S. Shumaker-Parry,et al.  Fabrication of Crescent‐Shaped Optical Antennas , 2005 .

[6]  George M Whitesides,et al.  Generation of 30-50 nm structures using easily fabricated, composite PDMS masks. , 2002, Journal of the American Chemical Society.

[7]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[8]  T. Odom,et al.  Selective functionalization and spectral identification of gold nanopyramids , 2007 .

[9]  Teri W Odom,et al.  Microscale arrays of nanoscale holes. , 2007, Small.

[10]  George M. Whitesides,et al.  Improved pattern transfer in soft lithography using composite stamps , 2002 .

[11]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[12]  David R. Smith,et al.  Shape effects in plasmon resonance of individual colloidal silver nanoparticles , 2002 .

[13]  G. Schatz,et al.  Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. , 2005, The journal of physical chemistry. B.

[14]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[15]  R. V. Van Duyne,et al.  Solution-phase, triangular ag nanotriangles fabricated by nanosphere lithography. , 2005, The journal of physical chemistry. B.

[16]  Heinz Raether,et al.  Surface plasmons on gratings , 1988 .

[17]  G. Schatz,et al.  Optical Properties of Gold Pyramidal Shells , 2008 .

[18]  C. Murphy,et al.  Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. , 2005, The journal of physical chemistry. B.

[19]  R. W. Wood,et al.  Anomalous Diffraction Gratings , 1935 .

[20]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[21]  Xingde Li,et al.  Shape-Controlled Synthesis of Silver and Gold Nanostructures , 2005 .

[22]  M. Ratner,et al.  Multipolar excitation in triangular nanoprisms. , 2005, The Journal of chemical physics.

[23]  C. Haynes,et al.  Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays † , 2003 .

[24]  Luke P. Lee,et al.  Magnetic Nanocrescents as Controllable Surface‐Enhanced Raman Scattering Nanoprobes for Biomolecular Imaging , 2005 .

[25]  C. Haynes,et al.  Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy , 2005 .

[26]  G. Schatz,et al.  Manipulating the optical properties of pyramidal nanoparticle arrays. , 2006, The journal of physical chemistry. B.

[27]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[28]  A. Heuberger,et al.  Anisotropic Etching of Crystalline Silicon in Alkaline Solutions I . Orientation Dependence and Behavior of Passivation Layers , 1990 .

[29]  George C Schatz,et al.  Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. , 2005, Journal of the American Chemical Society.

[30]  Thomas W. Ebbesen,et al.  Beyond the Bethe Limit: Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture , 1999 .

[31]  S. Kawata Near-Field Optics and Surface Plasmon Polaritons , 2001 .

[32]  W. A. Murray,et al.  Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. , 2004, Physical review letters.

[33]  George C Schatz,et al.  Surface plasmon standing waves in large-area subwavelength hole arrays. , 2005, Nano letters.

[34]  H. Bethe Theory of Diffraction by Small Holes , 1944 .

[35]  T. Odom,et al.  Pyramids: a platform for designing multifunctional plasmonic particles. , 2008, Accounts of chemical research.

[36]  Catherine J. Murphy,et al.  Wet chemical synthesis of silver nanorods and nanowiresof controllable aspect ratio , 2001 .

[37]  D. Astruc,et al.  Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum‐Size‐Related Properties, and Applications Toward Biology, Catalysis, and Nanotechnology. , 2004 .

[38]  Teri W. Odom,et al.  Directed Growth of Ordered Arrays of Small‐Diameter ZnO Nanowires , 2004 .

[39]  L. J. Giling,et al.  Anisotropic Etching of Crystalline Silicon in Alkaline Solutions , 2005 .

[40]  Bernhard Lamprecht,et al.  Design of multipolar plasmon excitations in silver nanoparticles , 2000 .

[41]  George C. Schatz,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[42]  Heinz Schmid,et al.  Siloxane Polymers for High-Resolution, High-Accuracy Soft Lithography , 2000 .

[43]  Teri W Odom,et al.  Multiscale patterning of plasmonic metamaterials. , 2007, Nature nanotechnology.

[44]  A. Geim,et al.  Nanofabricated media with negative permeability at visible frequencies , 2005, Nature.

[45]  Teri W. Odom,et al.  How gold nanoparticles have stayed in the light: the 3M's principle. , 2008, ACS nano.

[46]  George C Schatz,et al.  Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons. , 2007, Optics express.

[47]  Teri W Odom,et al.  Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. , 2006, Nano letters.

[48]  Younan Xia,et al.  Shape-Controlled Synthesis and Surface Plasmonic Properties of Metallic Nanostructures , 2005 .

[49]  Bernhard Lamprecht,et al.  Surface plasmon propagation in microscale metal stripes , 2001 .

[50]  Stephen Gray,et al.  Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. , 2005, Optics express.

[51]  A. Heuberger,et al.  Anisotropic Etching of Crystalline Silicon in Alkaline Solutions II . Influence of Dopants , 1990 .

[52]  Younan Xia,et al.  Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver , 2006 .

[53]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[54]  George C Schatz,et al.  Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. , 2005, Nano letters.

[55]  G. Chumanov,et al.  Multipole plasmon resonances of submicron silver particles. , 2005, Journal of the American Chemical Society.

[56]  K. Jefimovs,et al.  Remarkable polarization sensitivity of gold nanoparticle arrays , 2005 .

[57]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[58]  M. Wegener,et al.  Negative-index metamaterial at 780 nm wavelength. , 2006, Optics letters.